• Title/Summary/Keyword: Pore density

Search Result 601, Processing Time 0.023 seconds

Estimation of Shear Plane at Failed Landfill Using Field and Laboratory Tests (현장 및 실내실험을 이용한 매립지 전단활동면 추정에 대한 연구)

  • Choi, Hoseong;Kim, Tae-Hyung;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.315-327
    • /
    • 2019
  • Back analysis has been used to evaluate the factor of safety and circular failure plane at the landfill failure site. However, the estimated circular failure plane by back analysis is quite different from what is observed in the field. Thus, this study was conducted to estimate an actual shear failure plane inside the ground which gives a more accurate failure plane. Cone penetration test (CPT), boring test, soft X-ray image scan, density logging, and ultrasonic logging were conducted at the field and laboratory. The result of CPT showed significantly lower cone resistance, pore pressure, and undrained shear strength at a particular part. This part is a possible shear failure plane inside the ground. To validate, the soft X-ray scan images were analyzed and found the disturbed (inclined) bedding plane induced by shear activity at the estimated shear failure plane. Density and ultrasonic logging tests also found a similar result. Thus, the method in this study is possible to estimate the shear failure plane inside the ground.

The Geology and Variations of Soil Properties on the Slow-moving Landslide in Yangbuk-myun, Gyungju-si, Gyeongsangbuk-do (경상북도 경주시 양북면 땅밀림지의 지질 및 토양물리성의 변화)

  • Park, Jae-Hyeon;Park, Seonggyun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.216-223
    • /
    • 2019
  • This study was conducted to measure the changes in the geological and soil properties following slow-moving landslide events in Yangbuk-myun and Gyungju-si, Gyeongsangbuk-do, South Korea. The geological characteristics of the study site comprised black shale in the Gyeongsang nodal group formed in the Cretaceous period and quartz feldspar carcinoma in the east side with conglomerate in the Yeonil group formed in the Quaternary period. The study site exhibited the geologic characteristics of a slow-moving landslide with severely weathered rocks. The maximum collapsing depth of the slow-moving landslide was 12.0 m with colluvial deposits. The strike and joint aspects in the slope areas of the slow-moving landslides were $N46^{\circ}E$ in lower slope and $N62^{\circ}E$ in upper slope, respectively. Soil hardness of ${\leq}20cm$ deep was not measured because of the completely disturbed soil resulting from soil creeping. Soil from 25 to 90 cm deep was 1.4-4.7 times softer in the slow-moving landslide areas than in the undisturbed or natural forests. Soil bulk density was $1.24-1.29g/cm^3$ in land creep areas. Soil bulk in both areas was 1.6 times denser than that in the natural forest. The soil pore space was 51.5-53.3% in the land creep areas. The values are 1.3-1.4 times lower than those within the natural forest. Black shale areas showed the lowest coefficient of permeability (8.75 E-06 cm/s) and mesopore ratio (pF 2.7: 9.8%) compared with those resulting from other study areas.

Comparisons of Soil Characteristics between Campsites and Their Adjoining Forest Areas in the Eastern Area of Jirisan National Park (지리산국립공원 동부지역 야영장 조성지와 인접 산림지역의 토양 특성 비교)

  • Kim, Choon-Sig;Jang, Kyoung-Su;Lee, Hong-Woo;Cho, Hyun-Seo
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.6
    • /
    • pp.487-493
    • /
    • 2007
  • This study was carried out to evaluate soil property between campsites located at Joongsanri, Daewonsa old, Daewonsa new, Baekmudong and their adjoining forest areas in the eastern area of Jirisan National Park. The survey results showed that there existed a significant difference(p<0.05) between the two areas in soil property, such as soil bulk density, soil hardness, soil pH, water infiltration and soil respiration rates. However, there was no difference in soil property by depth between surface soil($0{\sim}15cm$) and subsurface soil($15{\sim}30cm$) for the two areas(p>0.05). In case of soil bulk density, its values in campsites were significantly higher ($1.29{\sim}1.44g/cm^3$) than in forest areas($0.95g/cm^3$), while soil hardness was significantly lower(p<0.05) in forest areas($1.44kg/cm^2$) than in campsites($2.9{\sim}4.0kg/cm^2$). Soil pore space was significantly lower in campsites($45.7{\sim}51.4%$) than in forest areas(64.3%), and soil pH in forest areas indicated pH 5.46 and that of the campsites was distributed at the range from pH 6.49 to pH 6.38. In addition, water infiltration was significantly lower in campsites($0.79{\sim}2.06cc/sec$) than in forest areas(18.7cc/sec), while soil respiration rates were significantly higher in forest areas($0.58gCO_2/m^2/h$) than in campsites($0.13{\sim}0.34gCO_2/m^2/h$).

The Effect of Al2O3 upon Firing Range of Clay-EAF Dust System Body (Clay-EAF Dust계 소지의 소결온도 범위에 미치는 Al2O3의 영향)

  • 김광수;강승구;이기강;김유택;김영진;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.494-500
    • /
    • 2003
  • The effects of $Al_2$O$_3$ addition upon the sintering range of clay-EAF dust (the specified wastes produced from steel making process) system body which would be used as a constructing bricks were investigated. The slope of apparent density to sintering temperature decreased for Clay-dust body containing 5~15 wt% A1203 sintered at 1200-125$0^{\circ}C$, and the absorption(%) of specimen sintered above 125$0^{\circ}C$ decreased due to the formation of open pores produced by pore bloating. For the specimen without any $Al_2$O$_3$ addition sintered at 1275$^{\circ}C$, the major phase was cristobalite, the small amount of mullite (3Al$_2$O$_3$ 2SiO$_2$) formed and the hematite (Fe$_2$O$_3$) remained. In the Clay-dust system body containing $Al_2$O$_3$ 15 wt%, however, the cristobalite disappeared and the major phase was mullite. Also the part of $Al_2$O$_3$ reacted with hematite to form hercynite (FeAl$_2$O$_4$). From the these results, addition of $Al_2$O$_3$ to Clay-dust system body enlarges a sintering range; decreasing an apparent density and absorption slop to sintering temperature owing to consumption of liquid phase SiO$_2$ at higher temperature and gas-forming component Fe$_2$O$_3$ at reduced atmosphere which would decrease an amount of liquid formed and increase the viscosity of the liquid produced during the sintering process.

Analyzing the Improvement and Using Realities for the Songrim Woodlands Management in Hadong, Gyeongsangnamdo (하동 송림 관리 및 이용실태와 개선방안 분석)

  • Hwa, Sam Young;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.315-322
    • /
    • 2013
  • This study was carried out to establish a management program and soil restoration plan through analysis of soil properties and visitor questionnaires in Songrim in Hadong, Korea. Soil bulk density in Songrim was slightly higher in the closed-woodlands ($1.31g/cm^3$) than in the open-woodlands ($1.39g/cm^3$). Soil bulk density in the closed-woodlands was higher in walking trails ($1.74g/cm^3$) than in forest areas ($1.39g/cm^3$), while the rates of pore space were lower in walking trails (42.6%) than in forest areas (50.5%). The soil porosity were lower in the closed-woodlands (34.6%) than in the open-woodlands (42.6%). Soil strength in surface soil was slightly lower in the open-woodlands ($8.5kgf/cm^2$) than in the closed-woodlands ($10.5kgf/cm^2$). The content of organic matter, total nitrogen and exchangeable cations of the woodlands was low compared with the optimum nutrient content for tree growth in Korea forest soil. According to the survey, the objective of visiting in Songrim was to enjoy recreation and landscape views. To conserve pine forest ecosystems in Songrim, the respondents said that it needs to the implement of closed-woodland periods, the establishment of smoking free zone, and the prohibition of garbage throwing and alcohol including disciplinary rules and education. Also the respondents said that pine forest ecosystem in Songrim is relatively sound, but the woodlands require the intensive management to the ecosystem and the introduction of native understory vegetation, such as grasses under pine forest ecosystem. It is recommended to designate the rest-year forest for a proper period in all woodlands to restore the Songrim soil rather than the alternation application between the rest-year for three years or non-rest-year trails, and to open partially the walking trails across the woodlands after the period. In addition, the forest within the woodland is need to designate a long-term rest-year.

Characterization of Ostrinia furnacalis (Lepidoptera: Pyralidae) Occurrence Against Maize and Sorghum Varieties in a Paddy-upland Rotation Field (답전윤환 포장 내 옥수수 및 수수 품종들에 대한 조명나방 발생 특성)

  • Kim, Min Joon;Yoon, Sung-Tag;Lee, Hee-Kwon;Jo, Hyeong-Chan;Kim, Soon-Il
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.329-336
    • /
    • 2016
  • Occurrence of oriental corn borer, Ostrinia furnacalis, and yield in a paddy-upland rotation field for 8 maize (Eolrukchal 1, Heugjeom 2, Miheukchal, Ilmichal, Heukjinjuchal, Chalok 4, Mibaek 2, Daehakchal) and 7 sorghum (Hwanggeumchal, Anzunbaengisusu, Moktaksusu, Sodamchal, DS-202, Nampungchal, Donganme) varieties has been surveyed. In a monitoring study using a pheromone trap carried out from 15 May to 10 September, the density of O. furnacalis adults increased rapidly from about 2 weeks after maize planting and reached the highest density at mid June. After that, their density was fluctuated a little at earlier September. The number of the damaged maize and invasive pores on the stem of 2 maizes and sorghum varieties was examined. The mean number of the damaged maize per 20 plants was 19 and 18 plants, and the number of invasive pores was 1.8 and 1.4 per maize stem in Daehakchal and Mibaek 2, respectively. In a survey carried out at harvest period using 8 maize varieties, the damaged ratio was 94%, 92%, 71%, 64%, 54%, 52%, and 45% in Daehakchal, Mibaek 2, Ilmichal, Eolrukchal 1, Chalok 4, Miheukchal, and Heugjeom 2, respectively. The number of invasive pore per Ilmichal stem was 1.4 and that of the others was less than 1.0 per stem. In addition, the damaged ratio of maize ears was 50% in Ilmichal, 40% in Heukjinjuchal, 37% in Daehakchal, etc. The damage pattern of 2 sorghum varieties, Nampungchal and Donganme, by O. furnacalis larvae was steeply increased from planting to 2 months and the trend was continued up to earlier August. At this time, the mean number of damaged sorghum was 13 and 9.2 plants for Nampungchal and Donganme, and the number of invasive stem pores was 1.06 and 0.46, respectively. In another survey carried out at harvest period for 7 sorghum varieties, their damaged ratio was 95% in DS-202, 76% in Moktaksusu, 75% in Sodamchal, 67% in Nampungchal, 57% in Anzunbaengisusu, 46% in Donganme, and 34% in Hwanggeumchal. The damage of sorghum varieties was much higher and severer than that of maizes by O. furnacalis larvae. The number of invasive pores on a sorghum stem was 1.7 in DS-202, 1.4 in Moktaksusu, 1.3 in Sodamchal, 1.1 in Nampungchal, 1.0 in Anzunbaengisusu, 0.5 in Donganme, and 0.4 in Hwanggeumchal. Meanwhile, there was no distinct connection between damaging results and yields of maizes and sorghums by O. furnacalis larvae in a paddy-upland rotation field. These results from this study can be applicable for the establishment of a management strategy to control Oriental corn borer in paddy-upland rotation fields for maize and sorghum.

Effects of Aloe (Aloe vera Linne) on the Quality Attributes of Chiffon Cake (쉬폰 케이크의 품질 특성에 미치는 알로에의 영향)

  • Kim, Hye-Young;Shin, Doo-Ho;Jung, Young-Nam
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.900-907
    • /
    • 2009
  • Chiffon cakes were prepared using various concentrations of aloe gel to develop functional baking procedures. The quality characteristics of chiffon cakes prepared after addition of 20%, 40%, or 60% (w/w) aloe gel, substituting for the same levels of wheat flour, were investigated. No significant weight difference between cakes was observed. The height of cakes containing aloe gel was significantly greater than that of control cakes. The baking loss rate (BLR) of aloe gel decreased as the amount of gel increased, and cakes prepared using 60% (w/w) aloe gel had the lowest BLR. Moisture contents of cakes prepared using aloe gel were higher than that of control cakes. Cakes with 60% (w/w) aloe gel had the highest moisture content. The pore size of cakes with 60% (w/w) aloe gel was the smallest of all groups. Crumb color became whiter as the proportion of aloe gel increased. Lightness (L value) of control cake was lower than that of cake containing aloe gel. Redness (a value) of aloe chiffon cakes increased as the proportion of aloe gel rose. Yellowness (b value) of cakes with 40% (w/w) aloe gel was significantly higher than that of the control group. Other cakes showed no difference in b value compared with control cake. Hardness in all cakes prepared with aloe gel was significantly lower than that of the control group. Adhesiveness of control cake was significantly lower than that of other cakes. No significant between-group difference in springiness was observed. The cohesiveness of cakes with 40% (w/w) aloe gel was significantly lower than that of the control group and that of cakes with 20% (w/w) aloe gel. The gumminess and chewiness of control cakes were significantly higher than those of other cakes. The yellowness of cake with 60% (w/w) aloe gel was significantly lower than that of the other groups. Pore size decreased after the addition of aloe gel. There was no significant difference in appearance among cakes thus, all cakes were acceptable to potential consumers. Although no perceptible difference in aloe odor was evident, cakes with 60% (w/w) aloe gel scored significantly lower in flavor acceptance compared with other cakes. No significant between-cake difference in taste acceptance, perceived moisture level, or texture acceptability was observed. Cakes with 40% and 60% (both w/w) aloe gel were of significantly higher density than other cakes. Overall, the acceptability of cakes with 60% (w/w) aloe gel was lower than that of other cakes. Ultimately, the results indicated that quality can be enhanced by adding less than 40% (w/w) aloe gel to chiffon cakes as a substitute for wheat flour.

Effects of Die Temperature and CO2 Gas Injection on Physical Properties of Extruded Brown Rice-Vegetable Mix (사출구 온도와 CO2 가스주입이 현미·야채류 압출성형물의 물리적 특성에 미치는 영향)

  • Gil, Sun-Kook;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1848-1856
    • /
    • 2013
  • This study is designed to examine the change in physical properties of extruded brown rice-vegetable mix at different temperatures and $CO_2$ gas injections. Moisture content and screw speed were fixed to 27% and 100 rpm respectively. Die temperatures and $CO_2$ gas injections were adjusted to 60, 80, $100^{\circ}C$ and 0, 150 mL/min, respectively. The ratio of ${\alpha}$-brown rice, brown rice and sugars (oligosaccharides and palatinose) was fixed to 25, 50 and 16%, respectively. Green tea, tomato and pumpkin powder were blended individually at 9%. Specific mechanical energy (SME) input decreased as die temperature for each vegetable addition increased. All extrudates decreased in density and breaking strength, but increased in specific length and water soluble index as $CO_2$ gas injection increased. Elastic modulus decreased as the die temperature and $CO_2$ gas injection increased. Extruded green tea mix with $CO_2$ gas injection at 150 mL/min was larger pore size and higher amount of pore than the tomato and pumpkin extrudates with $CO_2$ gas injection. Cold extrusion with $CO_2$ gas injection at $60^{\circ}C$ die temperature could be applicable for making Saengsik (uncooked food).

Quality Characteristics of Hard Roll Bread with Concentrated Sweet Pumpkin Powder (농축단호박 분말을 대체한 하드롤 빵의 품질 특성)

  • Lee, Chan-Ho;Chun, Soon-Sil;Kim, Mun-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.7
    • /
    • pp.914-920
    • /
    • 2008
  • In this study, hard roll breads were prepared with 3, 6, 9, 12, and 15% of concentrated sweet pumpkin powder (CSPP). The samples and a control were then compared in terms of quality characteristics, including pH, total titratable acidity, fermentation power of dough expansion, specific volume, baking loss, moisture content, color, textural characteristics, external and internal surface appearances, and sensory qualities of bread in order to determine the optimal ratio of CSPP in the formulation. As CSPP content increased, pH of dough, specific volume, baking loss, and lightness of bread decreased, while total titratable acidity of dough, pH, total titratable acidity, moisture content, and redness of bread increased. Fermentation power of dough expansion increased as incubation time increased. The CSPP samples had significantly higher yellowness, hardness, cohesiveness, gumminess, chewiness, and resilience than the control group. Adhesiveness was the highest at the 12% substitution level, while the lowest at the 6% level. Springiness increased with increasing CSPP content. In the sensory evaluation, as CSPP content increased, scores for color and consistency of crumb decreased, while scores for aroma of sweet pumpkin, sweetness, and delicious taste increased. Density of crumb pore were maximal with the 12% CSPP substitution. The CSPP samples had significantly higher uniformity of crumb pore and springiness of crumb than the control group. However, mouth-feel and overall acceptability showed the reverse effect, obtaining fairly good scores. In conclusion, the results indicate that substituting $6{\sim}9%$ CSPP to hard roll bread is optimal, providing good physiological properties as well as reasonably high overall acceptability.

Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(III) (아토마이징 제강슬래그를 충전재와 잔골재로 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • It is known that polymer concretes are 8~10 times more expensive than ordinary Portland cement concretes; therefore, in the production of polymer concrete products, it is very important to reduce the amount of polymer binders used because this occupies the most of the production cost of polymer concretes. In order to develop a technology for the reduction of polymer binders, smooth and spherical aggregates were prepared by the atomizing technology using the oxidation process steel slag (electric arc furnace slag, EAFS) and the reduction process steel slag (ladle furnace slag, LFS) generated by steel industries. A reduction in the amount of polymer binders used was expected because of an improvement in the workability of polymer concretes as a result of the ball-bearing effect and maximum filling effect in case the polymer concrete was prepared using the smooth and spherical atomized steel slag instead of the calcium carbonate (filler) and river sand (fine aggregate) that were generally used in polymer concretes. To investigate physical properties of the polymer concrete, specimens of the polymer concrete were prepared with various proportions of polymer binder and replacement ratios of the atomized reduction process steel slag. The results showed that the compressive strengths of the specimens increased gradually along with the higher replacement ratios of the atomized steel slag, but the flexural strength showed a different maximum strength depending on the addition ratio of polymer binders. In the hot water resistance test, the compressive strength, flexural strength, bulk density, and average pore diameter decreased; but the total pore volume and porosity increased. It was found that the polymer concrete developed in this study was able to have a 19% reduction in the amount of polymer binders compared with that of the conventional product because of the remarkable improvement in the workability of polymer concretes using the spherical atomized oxidation steel slag and atomized reduction steel slag instead of the calcium carbonate and river sand.