• 제목/요약/키워드: Pore Volume

검색결과 830건 처리시간 0.024초

계면활성제/응집제를 이용한 나프탈렌 오염토양 처리 (Treatment of Naphtalenes-Contaminated Soil by Surfactant/ Coagulant)

  • 박준석;박종은;신철호;박희정
    • 유기물자원화
    • /
    • 제12권2호
    • /
    • pp.82-90
    • /
    • 2004
  • 본 연구에서는 PAHs 중에서 흔히 높은 농도로 발견되고 있는 나프탈렌 오염토양에 대하여 지중토양세정으로 세정한 후 세정된 용액을 고분자 응집제로 처리하였다. 오염물질로는 2-methylnaphtalene과 1,5-dimethylnaphtalene을 사용하였다. 세정용액으로는 POE12와 SDS를 1 : 1 (부피비)로 혼합한 계면활성제를 사용하였다. 혼합계면활성제의 주입횟수를 5 pore volume까지 증가시켰을 때 2-methylnaphtalene의 세정효율은 지수적으로 1,5-dimethylnaphtalene의 제거율은 다소 선형적으로 증가하여 각각 약 80%와 60%가 세정되었다. 13 pore volume으로 세정한 후 2-methylnaphtalene과 1,5-dimethylnaphtalene의 세정효율은 각각 약 90%와 82%로 2-methylnaphtalene이 1,5-dimethylnaphtalene 보다 다소 높았으나, 물에 의하여 세정된 부분을 보정하면 약 42%와 71%로 상대적으로 소수성인 1,5-dimethylnaphtalene의 세정효율이 더 높았다. 약 10,000 mg/kg(건조토양)의 디젤 TPH는 5 pore volume의 주입에서 약 40%의 세정효율만을 나타내었으며, 추가적으로 13 pore volume까지 첨가하였을 때 약 70%의 세정효율을 보였다. 그러나 디젤내 나프탈렌 성분은 세정용액을 4 pore volume 까지 주입하였을 때까지 세정효율이 급격히 증가하였으며, 5 pore volume을 가하였을 때 90%가 세정되어 디젤 TPH의 40%보다 두 배 이상 높은 세정효율을 나타내었다. 2-Methylnaphthalene과 1,5-dimethylnaphthalene 오염토양 용출세정액은 6가지 고분자 응집제로 처리한 결과 응집제 모두 50% 부근의 비슷한 제거율을 나타내었다.

  • PDF

규산 수용액으로부터 분무열분해법에 의한 기공 특성이 제어된 메조기공의 다공성 실리카 분말 합성 (Pore-Controlled Synthesis of Mesoporous Silica Particles by Spray Pyrolysis from Aqueous Silicic Acid)

  • 장한권;이진우;오경준;장희동;길대섭;최정우
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.89-95
    • /
    • 2012
  • Spherical mesoporous silica particles, of which main pore diameter was 3.8 nm, were successfully prepared by spray pyrolysis from aqueous silicic acid. The effect of precursor concentration, reaction temperature, and the addition of urea and PEG on the particle diameter and pore properties such as pore diameter, total pore volume, and specific surface area were investigated by using FE-SEM, particle size analyzer, and nitrogen absorption-desorption analysis. With an increase of the precursor concentration from 0.2 M to 0.7 M, the average particle diameter, total pore volume, and specific surface area of the porous silica particles increased from 0.56 to $0.96\;{\mu}m$, 0.434 to $0.486\;cm^3/g$, 467.8 to $610.4\;m^2/g$, respectively. Within the temperature range $(600\;^{\circ}C{\sim}800\;^{\circ}C)$, there was no significant difference in the pore diameter, total pore volume, and specific surface area. In addition, the addition of urea as an expansion aid led to slight increases in particle diameter, pore diameter, and specific surface area. However, when the polyethylene glycol (PEG) as an organic template was used, the total pore volume of porous particles increased dramatically.

활성탄의 세공이 자연유기물질의 흡착에 미치는 영향 (Effect of pore characteristics of activated carbon on adsorption of natural organic matter)

  • 박정순;홍성호
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.249-255
    • /
    • 2011
  • It is complicate problem to optimize removing natural organic matter (NOM) by activated carbon in drinking water treatment because the activated carbon has heterogeneous surface area and pore structure. Seven different coals based activated carbons which have different pore structures were used in the study. Sand filtered effluents which normally used as GAC adsorber influent were used. The molecular weight distribution showed that most of the NOM was bigger than 10,000Da. In this study, systematical approaches such as characteristics of surface area and pore volume were evaluated on NOM adsorption. Especially, the adsorption capacities for NOM were evaluated by effect of micro-pores and meso-pores in surface area and pore structure. The results show that the higher ratio of meso-pore compare to the micro-pore has not only the better adsorption capacities for NOM but also the higher strongly-adsorbable fraction. Therefore, the overall adsorption capacity is increased with higher meso-pore ratio with existing of reasonable micro-pore surface area and volume.

저온 소성용 유리-알루미나 복합체에서 알루미나의 부피분율과 입자크기에 따른 소결 거동 (Effects of Volume Fraction & Particle Size of Alumina on Sintering Behaviors of the Glass-Alumina Composites for Low Firing Temperature)

  • 박덕훈;김봉철;김정주;박이순
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.638-644
    • /
    • 2000
  • The sintering behaviors of the glass-alumina composites for low firing temperature were investigated as functiions of the volume fraction of alumina powder and the particle size with respect to porosity and pore shape. As the volume fraction of alumina powder was increased or the particle size of it was decreased, the sintering temperature of open pore-closing was raised. When the volume fractions of alumina which had 2.19$\mu\textrm{m}$ median diameter were increased with 20, 30, 40, and 50%, the sintering temperatures of open pore-closing were 425, 450, 475, and 500$^{\circ}C$. And when the median particle size of alumina was diminished from 2.19$\mu\textrm{m}$ to 0.38$\mu\textrm{m}$, the sintering temperature of open pore-closing was increased from 450$^{\circ}C$ to 475$^{\circ}C$. Especially, the sintering temperature, which showed maximum density, was corresponded with the stage of open pore-closing and after achieving maximum density over heating resulted in dedensification of specimen, so called, over-firing behavior.

  • PDF

다공성 소결 순 Al에서 인장연성 변화에 관한 연구 (A Study on the Variation of Tensile Ductility in Porous Sintered Pure Aluminum)

  • 정재영
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.93-99
    • /
    • 2018
  • An analytical solution for the tensile ductility in porous ductile materials was derived based on an Irwin's approach of the elastic-plastic deformation in fracture mechanics. This was in good agreement with the experimental results of a tensile ductility in a sintered pure Al, and could solve the discrepancies in the Brown and Embury, or the McClintock models. This model was also offered as an advanced analytical solution considering the effect of stress triaxiality of pore tip in addition to pore interactions, material properties of matrix, and local deformation effect around pore. The evaluation of an analytical solution in the sintered pure Al powder compacts showed that the tensile ductility depends not only on the volume fraction of pores, but also on the pore size and on the mechanical properties of the matrix. The tensile ductility of the sintered pure Al compacts decreased rapidly with the increasing of a pore volume fraction, despite of the excellent tensile ductility of the matrix. This significant decrease in the tensile ductility was mainly attributed to the low yield strength of the matrix and small pore size. Particularly, the effects of the large radius and high volume fraction of the pore on the tensile ductility in Al-Form, were thus reasonably predicted by this analytical equation.

Boehmite 수화졸의 알루미나로 제조한 다공성 알루미나 세라믹스의 기공특성 (Pore Characteristics of Porous Alumina Ceramics Fabricated from Boehmite Hydrosol and Alumina Particles)

  • 오경영
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.547-555
    • /
    • 1996
  • Porous alumina ceramics were fabricated by pseudo-boehmite phydosol-gel process within/without commercial $\alpha$-alumina particles average 1 and 40 micron respectively. The pore characteristics of fired specimens were studied by the measurement of bulk density total porosity thyermal analysis pore volume pore distribution BET area XRD and SEM. with increasing of firing temperature pore volume and BET surface area were decreased and the average pore size was increased to approximately 146$\AA$ upto 80$0^{\circ}C$ by de-watering of [OH] and formation of $\alpha$-alumina. The fired relative density of the alumina-dispersed specimen with average 1 micron particle was increased with the amounts of dispersed particle by bimodal packing theory which is compared to the ones of specimen including of average 40 micron particle. It was confirmed that the percola-tion threshold in porous ceramics with coarser particle (40 micron) has formed between the transformed-alumina from hydrogel and dispersed-alumina of above 50 vol% particle and the total porosity was increased at the threshold point above.

  • PDF

Change of pore structure and uniaxial compressive strength of sandstone under electrochemical coupling

  • Chai, Zhaoyun;Bai, Jinbo;Sun, Yaohui
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.157-164
    • /
    • 2019
  • The effect of electrochemical modification of the physical and mechanical properties of sandstone from Paleozoic coal measure strata was investigated by means of liquid nitrogen physical adsorption, X-ray diffraction and uniaxial compressive strength (UCS) tests using purified water, 1 mol/L NaCl, 1 mol/L $CaCl_2$ and 1 mol/L $AlCl_3$ aqueous solution as electrolytes. Electrochemical corrosion of electrodes and wire leads occurred mainly in the anodic zone. After electrochemical modification, pore morphology showed little change in distribution, decrease in total pore specific surface area and volume, and increased average pore diameter. The total pore specific surface area in the anodic zone was greater than in the cathodic zone, but total pore volume was less. Mineralogical composition was unchanged by the modification. Changes in UCS were caused by a number of factors, including corrosion, weakening by aqueous solutions, and electrochemical cementation, and electrochemical cementation stronger than corrosion and weakening by aqueous solutions.

Evaluation of Humidity Control Ceramic Paint Using Gypsum Binder

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.74-79
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than those of bentonite and zeolite. It was effective to add white cement as well as a retarding agent to control the setting time of the ceramic paint. As the amount of added porous materials increases, the specific surface area and total pore volume of ceramic paint increase, but the average pore diameter decreases. The addition of porous materials having a high specific area and a large pore volume improves the moisture absorptive and desorptive performance of the ceramic paint. Therefore, in this experiment, the moisture absorptive and desorptive properties were best when active clay was added. Also, as the added amount of porous materials increases, the moisture absorptive and desorptive properties improve. In this experiment, when 70 mass% of active clay was added to ceramic paint, the hygroscopicity was highest at about $80g/m^2$.

함침재의 점도에 따른 벌크흑연의 기공 채움 효과 (The Pore-filling Effect of Bulk Graphite According to Viscosity of Impregnant)

  • 이상민;이상혜;노재승
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.101-107
    • /
    • 2021
  • Pores produced by carbonization in bulk graphite process degrade the mechanical and electrical properties of bulk graphite. Therefore, the pores of bulk graphite must be reduced and an impregnation process needs to be performed for this reason. In this study, bulk graphite is impregnated by varying the viscosity of the impregnant. The pore volume and pore size distribution, according to the viscosity of the impregnant, are analyzed using a porosimeter. The total pore volume of bulk graphite is analyzed from the cumulative amount of mercury penetrated. The volume for a specific pore size is interpreted as the amount of mercury penetrating into that pore size. This decreases the cumulative amount of mercury penetrating into the recarbonized bulk graphite after impregnation because the viscosity of the impregnant is lower. The cumulative amount of mercury penetrating into bulk graphite before impregnation and after three times of impregnation with 5.1cP are 0.144 mL/g and 0.125 mL/gm, respectively. Therefore, it is confirmed that the impregnant filled the pores of the bulk graphite well. In this study, the impregnant with 5.1 cP, which is the lowest viscosity, shows the best effect for reducing the total pore volume. In addition, it is confirmed by Raman analysis that the impregnant is filled inside the pores. It is confirmed that phenolic resin, the impregnant, exists inside the pores through micro-Raman analysis from the inside of the pore to the outside.

알칼리 감량 폴리에스테르 섬유의 기공도와 염색성 (The Porosity and the Dyeability of Polyester Fiber Treated with Sodium Hydroxide Aqueous Solution)

  • 김병인;김태경;임용진;조광호;조규민
    • 한국염색가공학회지
    • /
    • 제12권6호
    • /
    • pp.380-388
    • /
    • 2000
  • The porosity of polyester fibers treated with sodium hydroxide aqueous solution was investigated using a nitrogen porosimeter, and the dyeability of the treated fibers was discussed in terms of the porosity. In pore distribution, the polyester fibers treated with sodium hydroxide aqueous solution were characterized by higher amount of pores below $10\AA$ than those of the untreated fibers, and by shift of the pore size having maximum accumulated volume from $10\AA$ for the untreated fibers to $5~6\AA$. As the weight loss of the polyester fibers treated with sodium hydroxide aqueous solution increased, BET surface area and total pore volume increased linearly, but average pore size, showing some different aspect, increased steeply at earlier stage and then approached the maximum value. The dye uptakes of the polyester fibers treated with sodium hydroxide aqueous solution increased with the BET surface area, the total pore volume and the average pore size. The alkali treatment increased the surface area of polyester fibers, so that the chance of contact between the fiber and dye molecules increased. In addition, the pores created on the surface of polyester fibers by alkali treatment might act as pathways for dye molecules into the polyester fibers.

  • PDF