• Title/Summary/Keyword: Pore Volume

Search Result 830, Processing Time 0.02 seconds

Removal of Odor- containing Sulfur Compound, Methyl Mercaptan using Modified Activated Carbon with Various Acidic Chemicals (산으로 개질된 활성탄을 이용한 메틸 메르캅탄 악취물질 제거)

  • Kim Dae Jung;Seo Seong Gyu;Kim Sang Chai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Removal of methyl mercaptan was investigated using adsorption on virgin activated carbon (VAC) and modified activated carbons with acidic chemicals in the present work. CAC, NAC, AAC and SAC were represented as activated carbons modified with HCI, HNO$_{3}$, CH$_{3}$COOH and H$_{2}$S0$_{4}$ ,respectively The pore structures were evaluated using nitrogen isotherm. The surface properties of virgin activated carbon and modified activated carbons were characterized by EA, pH of carbon surface and acid value from Boehm titration. The modification of activated carbon with acidic chemicals resulted in a decrease in BET surface area, micropore volume and surface pH, but an increase in acid value. The order of the adsorption capacity of activated carbons was NAC>AAC>SAC>CAC>VAC, and in agreement with that of acid value of activated carbons, whereas in disagreement with that of micropore volume of activated carbons. It appeared that chemical adsorption played an important role in methyl mercaptan on modified activated carbons with acidic chemicals compared to virgin activated carbon. Modifying activated carbon with acidic chemicals enabled to significantly enhance removal of methyl mercaptan.

A Study on Adsorption of Volatile Organic Compound by Activated Carbon Fiber Coated with Dielectric Heating Element and Desorption by Applying Microwave (유전가열물질을 코팅한 활성탄소섬유의 휘발성 유기화합물 흡착 및 마이크로파 인가에 의한 탈착 연구)

  • Kim, Sang-Guk;Chang, Ye-Rim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.122-132
    • /
    • 2009
  • Adsorption of toluene by activated carbon fiber (ACF) coated with dielectric heating element and desorption by applying microwave were investigated. In order to prepare adsorbent so that VOC can be desorbed by microwave heating, fine dielectric heating element with nano size was coated on the surface of the ACF using hybrid binder. Eight adsorbents (ACF-DHE, Activated Carbon Fiber coated with Dielectric Heating Element) were prepared with different amount of dielectric heating element, kinds of hybrid binder, and solvent. In order to investigate adsorption characteristics, BET surface area, pore volume, and average pore size were measured for each adsorbent including ACF. Breakthrough experiments with toluene concentration, flow rate, bed length using fixed bed reactor were performed to investigate adsorbality of adsorbent, and results were compared with that of the ACF. Desorption reactor was constructed with modified microwave oven to investigate heating effect on ACF-DHE by applying microwave power. Each adsorbent saturated with toluene were put into desorption reactor. Composition of desorbed gas generated by applying controlled microwave power to reactor was measured. Up to now, hot air desorption method has been used. Experimental results showed that desorption method with new adsorbent prepared by coating dielectric heating element on ACF can be used for industrial application.

Physical Property with the Manufacturing Conditions of Activated Carbon for Mercury Adsorption (제조조건에 따른 활성탄의 특성 및 수은 흡착 효율)

  • Min, Hyo-Ki;Ahmad, Tanveer;Park, Min;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.302-314
    • /
    • 2015
  • There is an adsorption method using activated carbon as a typical method for removing elemental mercury. Physical characteristics of activated carbon such as specific surface area and volume of pore (micro and meso) have positive effect for mercury adsorption. Activated carbon is carbon-based material with a high specific surface area. This activated carbon can be manufactured through carbonization and activation process. In this process, physical characteristics of specific surface area and pore distribution are changed by controlling operating parameters like temperature, time and reagent of activation. In this study, we evaluated characteristics of activated carbons manufactured from pinewood and coal with the operating parameters. We evaluated mercury adsorption capacities of the activated carbons having excellent physical characteristics and compared those to the commercial activated carbon.

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun;Li, Bao-Lin;Zheng, Yan-Jun;Wang, Wen-Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2961-2965
    • /
    • 2012
  • Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

Effect of Template Removal on Synthesis of Organic-Inorganic Hybrid Mesoporous MCM-48

  • Zhao, Ya Nan;Li, San Xi;Han, Chong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3196-3202
    • /
    • 2012
  • Post-synthesis is used to synthesize organic hybrid inorganic mesoporous sieves. In this method, the activity and structure of the base sieve are crucial to obtain the definable hybrid materials. The chemical and physical properties of the base can be largely changed either by the final step of its synthesizing processes, by template removal which is accomplished with the oxidative thermal decomposition (burning) method or by solvent extraction method. In this paper we compared two methods for the post-synthesis of organic hybrid MCM-48. When the template was extracted with HCl/alcohol mixture, the final product showed larger pore size, larger pore volume and better crystallinity compared to the case of the thermal decomposition. The reactivity of the surface silanol group of template free MCM-48 was also checked with an alkylsilylation reagent $CH_2=CHSi(OC_2H_5)_3$. Raman and $^{29}Si$ NMR spectra of MCM-48 in the test reaction indicated that more of the organic group was grafted to the surface of the sample after the template was removed with the solvent extraction method. Direct synthesis of vinyl-MCM-48 was also investigated and its characteristics were compared with the case of post-synthesis. From the results, it was suggested that the structure and chemical reactivity can be maintained in the solvent extraction method and that organic grafting after the solvent extraction can be a good candidate to synthesize a definable hybrid porous material.

High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch

  • Choi, Poo Reum;Kim, Sang-Gil;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.22
    • /
    • pp.70-80
    • /
    • 2017
  • Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) pre-carbonized at $500-1000^{\circ}C$ in $N_2$ gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at $700^{\circ}C$, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above $700^{\circ}C$ and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.

Modeling and Characterization of Steam-Activated Carbons Developed from Cotton Stalks

  • Youssef, A.M.;Hassan, A.F.;Safan, M.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2013
  • Physically and chemically activated carbons (ACs) exhibited high adsorption capacities for organic and inorganic pollutants compared with other adsorbents due to their expanded surface areas and wide pore volume distribution. In this work, seven steam-ACs with different burn-off have been prepared from cotton stalks. The textural properties of these sorbents were determined using nitrogen adsorption at $-196^{\circ}C$. The chemistry of the surface of the present sorbents was characterized by determining the surface functional C-O groups using Fourier transform infrared spectroscopy, surface pH, $pH_{pzc}$, and Boehm's acid-base neutralization method. The textural properties and the morphology of the sorbent surface depend on the percentage of burn-off. The surface acidity and surface basicity are related to the burn-off percentage. A theoretical model was developed to find a mathematical expression that relates the % burn-off to ash content, surface area, and mean pore radius. Also, the chemistry of the carbon surface is related to the % burn-off. A mathematical expression was proposed where % burn-off was taken as an independent factor and the other variable as a dependent factor. This expression allows the choice of the value of % burn-off with required steam-AC properties.

Increase in Color Depth of Polyester Fiber by Alkali Treatment and Analysis of the Surface Structure (알칼리 감량에 의한 폴리에스테르 섬유의 심색화와 표면구조분석)

  • 김태경;임용진;석정달;조광호
    • Textile Coloration and Finishing
    • /
    • v.11 no.5
    • /
    • pp.22-29
    • /
    • 1999
  • The increase in color depth of polyester fiber dyed with black disperse dyes was investigated with respect to the kinds of resins and alkali treatment. The color depth of the dyed polyester fiber increased continuously according to the concentration of resins coated onto the fabrics. The alkali treatment to polyester fiber before dyeing also enhanced the color depth. It was thought that the polyester fiber was hydrolyzed by alkali resulting micropores on the sample. And the following treatment with a resin, Jet Black T-101, to the polyester fiber increased the color depth much higher. The successive process of alkali treatment, dyeing and Jet Black T-101 treatment could give the best color depth to polyester fiber. Although the alkali treatment reduced the tensile strength of polyester fiber, the color depth of polyester fiber enhanced sufficiently within the range of practically acceptable weight loss and strength. To analyze the micropore on the polyester fiber formed by alkali treatment, nitrogen porosimeter was used. As the weight loss of polyester fiber treated with alkali increased, the BET(Brunauer-Emmett-Teller) surface area, total pore volume, and average pore size of the sample increased.

  • PDF

Preparation, characterization of activated carbon fiber from luffa and its application in CVFCW for rainwater treatment

  • Ahmed, Sanjrani Manzoor;Zhou, Boxun;Zhao, Heng;Zheng, You Ping;Wang, Yue;Xia, Shibin
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2020
  • ACF preparation from different materials has been attached with great attention during these years. This study was conducted to prepare activated carbon fiber (ACF) from luffa through the processes i.e pre-treatment, pre-oxidation and carbonization activation. Besides, this study also characterizes the ACF and its effect, i.e effect of pre-oxidation time and temperature also activation time and temperature on the compressive strength of ACF were investigated. The results from SEM, BET, FTIR and XRD show that the ACF is very efficient. The products under the optimum conditions had a specific surface area of 478.441 m2 /g with an average pore diameter of 3.783nm, and a pore volume of 0.193 cm3 /g. The surface of the luffa fiber is degummed and exposed, which is beneficial to the subsequent process and the increase of product properties. The compressive strength of HP-ACF was prepared under the optimum conditions, which can reach 0.2461 MPa. ACF is rich in micro-pores and has a good application prospect in the field of environmental protection.

Adsorption capability of activated carbon synthesized from coconut shell

  • Islam, Md Shariful;Ang, Bee Chin;Gharehkhani, Samira;Afifi, Amalina Binti Muhammad
    • Carbon letters
    • /
    • v.20
    • /
    • pp.1-9
    • /
    • 2016
  • Activated carbon was synthesized from coconut shells. The Brunauer, Emmett and Teller surface area of the synthesized activated carbon was found to be 1640 m2/g with a pore volume of 1.032 cm3/g. The average pore diameter of the activated carbon was found to be 2.52 nm. By applying the size-strain plot method to the X-ray diffraction data, the crystallite size and the crystal strain was determined to be 42.46 nm and 0.000489897, respectively, which indicate a perfect crystallite structure. The field emission scanning electron microscopy image showed the presence of well-developed pores on the surface of the activated carbon. The presence of important functional groups was shown by the Fourier transform infrared spectroscopy spectrum. The adsorption of methyl orange onto the activated carbon reached 100% after 12 min. Kinetic analysis indicated that the adsorption of methyl orange solution by the activated carbon followed a pseudo-second-order kinetic mechanism (R2 > 0.995). Therefore, the results show that the produced activated carbon can be used as a proper adsorbent for dye containing effluents.