• 제목/요약/키워드: Pore Relationships

Search Result 71, Processing Time 0.022 seconds

APPLICATIONS OF PORE AND GRAIN-SIZE DISTRIBUTIONIN RECOVERY OF LNAPLS IN SOILS (토양속의 LAPLs 제거기슬에서의 Pore와 입도분포의 응용에 관한 연구)

  • Lee, Kwang-Y.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.12a
    • /
    • pp.19-32
    • /
    • 1992
  • Objectives of this study are : 1) to utilize capillary theory and obtain pore-size distribution profiles from moisture-suction relationships using Laplace theory. 2) to investigate the behavior of Light Non-Aqueous Phase Liquids(LNAPLs) in the subsurface environment and to develop several predictive relationships which can be used to assess the effectiveness of various LNAPLs remediation technologies. The relationship to predict pore-size distribution function expressed in differencial equation is found by using capillary theory. Also, experiments are conducted to : the various LNAPLs subjected to vadose zone drainage, groundwater table drainage, waterflooding with surfactants. The experiments are performed with #2 heating oil, jet fuel. and kerosene. Several relationships have been derived describing the effect of various properties and process parameters on the LNAPL residual saturation.

  • PDF

Correlation of Piezocone Dissipation Results and Compression Index (피에조콘 소산결과와 압축지수의 상관관계)

  • Park, Young-Hwan;Kang, Beong-Joon;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1204-1211
    • /
    • 2008
  • Compression index is one of the important characteristic numbers in soft soil engineering. Since 1940's, many researchers have suggested various practical solutions to define the compression index of clay using other soil properties. But, these results are only can give us an outline of soft soil behavior. In this study, the relationships between pore water pressure dissipation test results and compression index were suggested using comparison results of both tests. This relationships are based on basic concept of consolidation phenomena, essential difference between pore water pressure dissipation test and consolidation test, and disagreements between theoretical time factor and real time factor. To identify proportional factor of proposed equation, Geotechnical investigation results of Kwang-Yang(KY) site and Busan New Port(BN) site were used. The proportional factor was 0.0031 from 20 to 50% of consolidation rate where correlation parameter($R^2$) is 0.9051.

  • PDF

Studies on the Pore of Coating Layer and Printability(II) -Effects of Pigment Shape on Pore of Coating Layer- (도공층의 공극과 인쇄적성에 관한 연구(제2보) -안료의 입자형태가 미치는 영향-)

  • 김창근;이용규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • This study was carried out to evaluate the effect of coating pigments on the printability by investigating the pore structure of casting layer such as the number, size and distribution of pores and the pore rate. The coating structure was mainly determined by the interaction between pigment and binder. It means that the structure of pores was chiefly affected by the shape and size distribution of pigments and their packing rate. The physical properties of pore have close relationships with ink set-off, the speed of ink penetration and printing gloss. The results suggested that the rate and number of pores were greatly affected by the particle size distribution and shape of pigments. The rate of pore increased with the reduction of particle size distribution of pigments. Calcite was effective to improve greatly the printability of coated paper.

  • PDF

Adsorption properties of surface - modified activated carbon (활성탄의 표면 구조 변화에 따른 흡착 특성 연구)

  • 김정렬;서문원;신창호;김영호;이근회;지상운
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.191-197
    • /
    • 1994
  • Relationships between surface structure and adsorption properties of smoke components were investigated in surface-modified and un-modified activated carbon filter cigarettes. Commercially available activated carbon was treated with nitric acid and hydrogen peroxide as oxidant, and their pore volume, surface structure, BET surface area, pore type and size were studied. BET surface area and pore volume were decreased by nitric acid treatment, but median pore diameter was 8.1 $\AA$, which showed better development of pore compared with that of un-modified activated carbon, 6.9 $\AA$. In case of hydrogen peroxide treatment, BET surface area and pore volume were increased. Their pore was found to be a slit type based on V-t plot analysis. Neutralization capacities for bases of different strength (NaHCO3, Na2CO3, NaOEt and NaOH) showed that the majority of the acidic surface groups are of weak acidity. Modification of the activated carbon surface led to a slight change in adsorption properties when analyzing the smoke of triple-filter cigarette with surface-modified activated carbon.

  • PDF

Elastic Modeling for the Behavior of Undrained Pore Water Pressure in Saturated Sand (포화된 사질토에서 비배수 공극수압거동에 대한 탄성해석모델의 개발)

  • Eam, Sung-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.43-49
    • /
    • 2005
  • In this study. it was suggested that the elastic model to analyze the behavior of pore water pressure in saturated sand specimen on the condition of non-drainage. The model based on the experiments which were performed for the relationships between the pore water pressure and the grain size of specimen, and effective stress, respectively. The suggested model embodied the pore water and soil grain as separate elastic springs of different stiffness. The springs were joined parallel and the axial strains were restricted to the same deformation. The suggested model was well consistent with the experiments.

Characterization on the Relationships among Rainfall Intensity, Slope Angle and Pore Water Pressure by a Flume Test : in Case of Gneissic Weathered Soil (산사태 모형실험을 통한 강우강도 및 사면경사 변화와 간극수압과의 관계 연구 : 편마암 풍화토를 대상으로)

  • Chae, Byung-Gon;Lee, Seong-Ho;Song, Young-Suk;Cho, Yong-Chan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.57-64
    • /
    • 2007
  • This study was conducted to characterize on the relationships among rainfall intensity, slope angle and pore water pressure in the gneissic weathered soil by landslide laboratory flume tests. Under the several test conditions dependent on rainfall intensity and slope angle, the authors measured pore water pressure, failure and displacement of slope on a regular time interval. According to the test results, the increasing times of pore water pressures have direct proportional trends to the rainfall intensity. The pore water pressure was increased earlier at the head part of slope than the toe part. Compared with the test results of Chae et al(2006), the results of this study explain that the seepage velocity in the gneissic weathered soil is slower than that in the standard sands. It results in faster and ear-lier increase of pore water pressure at the head part of slope due to slow flow of water in the gneissic weathered soil. In case of the relationship between slope angle and pore water pressure, gentle slope angle has faster increase of pore water pressure than steeper slope angle. It is also thought to be due to slow seepage velocity and flow velocity in the gneissic weathered soil.

Suitable Use of Capillary Number for Analysis of NAPL Removal from Porous Media

  • Jeong, Seung-Woo,
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.25-28
    • /
    • 2004
  • The capillary number is used to represent the mobilization potential of organic phase trapped within porous media. The capillary number has been defined by three different forms, according to types of flow velocity and viscosity used in the definition of capillary number. This study evaluated the suitability of the capillary number definitions for representing TCE mobilization by constructing capillary number-TCE saturation relationships. The results implied that the capillary number should be correctly employed, according to interest of scale and fluid flow behavior. This study suggests that the pore-scale capillary number may be used only for investigating the organic-phase mobilization at the pore scale because it is defined by the pore-velocity and the dynamic viscosity. The Newtonian-fluid capillary number using Darcy velocity and the dynamic viscosity may be suitable to quantify flood systems representing Newtonian fluid behavior. For viscous-force modified flood systems such as surfactant-foam floods, the apparent capillary number definition employing macroscopic properties (permeability and potential gradient) may be used to appropriately represent the desaturation of organic-phases from porous media.

  • PDF

Comparison of Adsorption Characteristics on Zeolite 13X and Silica-aluminar (제올라이트 13X와 실리카-알루미나의 흡착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;An, Chang-Doeuk;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.729-736
    • /
    • 2011
  • This work is to compare the experiment results by a continuous fixed-bed adsorption of water vapor, acetone vapor, and toluene vapor on zeolite 13X (SAU) and silica-alumina (SAK). SAU and SAK have very different pore structure but similar composition as inorganic adsorbent. The relationship between the equilibrium adsorption capacity and specific pore size range were studied. Adsorption of water vapor was more suitable on SAU than SAK because SAU has relatively more developed pores around $5\;\AA$ than SAK in the pore range of $10\sim100\;\AA$. Adsorption of acetone vapor was more suitable on SAK than SAU because SAK has relatively more developed pores around $5\sim10\;\AA$ than SAK in the pore range of less than $10\;\AA$. Adsorption of toluene vapor was more suitable on SAK than SAU because SAK has relatively more developed pores in the pore range of $10\sim100\;\AA$ than SAK. Adsorption capacity of the adsorbent was closely related to the surface area generated in the specific pore size region. But it was difficult to distinguish the relationships between adsorption capacity and micro area, and the external surface area of adsorbent.

Analysis of Cell Performance with Varied Electrolyte Species and Amounts in a Molten Carbonate Fuel Cell

  • Lee, Ki-Jeong;Kim, Yu-Jeong;Koomson, Samuel;Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 2018
  • This study evaluated the performance characteristics of varied electrolyte species and amounts in a molten carbonate fuel cell (MCFC). Coin-type MCFCs were used at the condition of $650^{\circ}C$ and 1 atm. In order to measure the effects of varied electrolyte species and amounts, electrolytes of $(Li+K)_2CO_3$ and $(Li+Na)_2CO_3$ were selected and the amounts of 1.5 g, 2.0 g, 3.0 g, and 4.0 g were used. Insignificant performance differences were observed in the cell using different electrolytes, but the cell performance was sensitive to the amount of the electrolyte used. The pore-filling ratio (PFR), a ratio of pore filling in the components by the liquid carbonate electrolytes, was used to determine the optimum performance range. Consequently, 77% PFR demonstrated the optimum performance for both electrolytes. Thus, the MCFC had a permissible but narrow optimum performance range. The remaining amounts of electrolyte in the cells were determined using the weight reduction ratio (WRR) method after several hours of cell operation. The WRR used the relationship between the initial loaded amount of electrolyte and weight reduction of components in 10 wt% acetic acid. The relationships were linear and identical between the two electrolyte species.