• Title/Summary/Keyword: Porcine ${\beta}$-casein Gene

Search Result 6, Processing Time 0.024 seconds

Cloning and Molecular Characterization of Porcine β-casein Gene (CNS2)

  • Lee, Sang-Mi;Kim, Hye-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.421-427
    • /
    • 2012
  • The production of therapeutic proteins from transgenic animals is one of the most important successes of animal biotechnology. Milk is presently the most mature system for production of therapeutic proteins from a transgenic animal. Specifically, ${\beta}$-casein is a major component of cow, goat and sheep milk, and its promoter has been used to regulate the expression of transgenic genes in the mammary gland of transgenic animals. Here, we cloned the porcine ${\beta}$-casein gene and analyzed the transcriptional activity of the promoter and intron 1 region of the porcine ${\beta}$-casein gene. Sequence inspection of the 5'-flanking region revealed potential DNA elements including SRY, CdxA, AML-a, GATA-3, GATA-1 and C/EBP ${\beta}$. In addition, the first intron of the porcine ${\beta}$-casein gene contained the transcriptional enhancers Oct-1, SRY, YY1, C/EBP ${\beta}$, and AP-1, as well as the retroviral TATA box. We estimated the transcriptional activity for the 5'-proximal region with or without intron 1 of the porcine ${\beta}$-casein gene in HC11 cells stimulated with lactogenic hormones. High transcriptional activity was obtained for the 5'-proximal region with intron 1 of the porcine ${\beta}$-casein gene. The ${\beta}$-casein gene containing the mutant TATA box (CATAAAA) was also cloned from another individual pig. Promoter activity of the luciferase vector containing the mutant TATA box was weaker than the same vector containing the normal TATA box. Taken together, these findings suggest that the transcription of porcine ${\beta}$-casein gene is regulated by lactogenic hormone via intron 1 and promoter containing a mutant TATA box (CATAAAA) has poor porcine ${\beta}$-casein gene activity.

Knock-in of Enhanced Green Fluorescent Protein or/and Human Fibroblast Growth Factor 2 Gene into β-Casein Gene Locus in the Porcine Fibroblasts to Produce Therapeutic Protein

  • Lee, Sang Mi;Kim, Ji Woo;Jeong, Young-Hee;Kim, Se Eun;Kim, Yeong Ji;Moon, Seung Ju;Lee, Ji-Hye;Kim, Keun-Jung;Kim, Min-Kyu;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1644-1651
    • /
    • 2014
  • Transgenic animals have become important tools for the production of therapeutic proteins in the domestic animal. Production efficiencies of transgenic animals by conventional methods as microinjection and retrovirus vector methods are low, and the foreign gene expression levels are also low because of their random integration in the host genome. In this study, we investigated the homologous recombination on the porcine ${\beta}$-casein gene locus using a knock-in vector for the ${\beta}$-casein gene locus. We developed the knock-in vector on the porcine ${\beta}$-casein gene locus and isolated knock-in fibroblast for nuclear transfer. The knock-in vector consisted of the neomycin resistance gene (neo) as a positive selectable marker gene, diphtheria toxin-A gene as negative selection marker, and 5' arm and 3' arm from the porcine ${\beta}$-casein gene. The secretion of enhanced green fluorescent protein (EGFP) was more easily detected in the cell culture media than it was by western blot analysis of cell extract of the HC11 mouse mammary epithelial cells transfected with EGFP knock-in vector. These results indicated that a knock-in system using ${\beta}$-casein gene induced high expression of transgene by the gene regulatory sequence of endogenous ${\beta}$-casein gene. These fibroblasts may be used to produce transgenic pigs for the production of therapeutic proteins via the mammary glands.

Analysis of Porcine $\beta$-casein Gene Promoter by Site-directed Mutagenesis

  • Chung, Hee-Kyoung;Seong, Hwan-Hoo;Im, Seok-Ki;Lee, Hyun-Gi;Kim, Soon-Jeung;Lee, Poongyeong;Lee, Yun-Keun;Chang, Won-Kyong;Moosik Kwon
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.71-71
    • /
    • 2002
  • Promoters for milk proteins have been used far producing transgenic animals due to their temporal and spatial expression patterns. ${\beta}$-casein, a calcium-sensitive casein, is a major milk protein that corresponds ca. 30 per cent of total milk protein. Expression of ${\beta}$-casein is controlled by lactogenic hormones such as prolactin (PRL), composite response elements (CoREs) and transcription factors. CoREs are clusters of transcription factor binding sites containing both positive and negative regulatory elements. ${\beta}$-casein gene promoter contains various regions (CoREs) for gene transcription. We analyzed the promoter region by mutagenesis using exonuclease III and linker-scanning. Transcription control elements usually are positioned in 5'-flanking region of the gene. However, in some cases, these elements are located in other regions such as intron 1. The nucleotide sequences of ${\beta}$-casein promote. region has been reported (E12614). However, the properties of the promoter is not yet clear. In this study, we plan to investigate the properties of cis-regulating elements of porcine ${\beta}$-casein by mutation analysis and expression analysis using dual-luciferase repoter assay system.

  • PDF

Construction and Expression Analysis of Knock-in Vector for EGFP Expression in the Porcine $\beta$-Casein Gene Locus (돼지 $\beta$-Casein을 이용한 EGFP 발현 Knock-in 벡터의 구축 및 발현 검증)

  • Lee, Sang-Mi;Kim, Hey-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.205-209
    • /
    • 2008
  • This study was carried out to develop knock-in vector for EGFP (enhanced green fluorescent protein) expression in porcine $\beta$-casein locus. For construction of knock-in vector using porcine $\beta$-casein gene, we cloned the $\beta$-casein genome DNA from porcine fetal fibroblast cells, EGFP and SV40 polyA signal using PCR. The knock-in vectors consisted of a 5-kb fragment as the 5' recombination arm and a 2.7-kb fragment as the 3' recombination arm. We used the neomycin resistance gene ($neo^{r}$) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. To demonstrate EGFP expression from knock-in vector, we are transfected knock-in vector that has EGFP gene in murine mammary epithelial cell line HC11 cells with pSV2 neo plasmid. The EGFP expression was detected in HC11 cells transfected knock-in vector. This result demonstrates that this knock-in vector may be used for the development of knock-in transgenic pig.

Production of Transgenic Pig Harboring Tissue-type Plasminogen Activator Gene with Bovine-$\beta$-Casein Promoter

  • Park, J.K.;Lee, Y.K.;Lee, P.Y.;Kim, S.W.;Jeon, I.S.;Lee, H.G.;Han, J.H.;Park, C.G.;Lee, S.E.;Beak, K.N.;Chang, W.K.
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.190-190
    • /
    • 2004
  • Tissue plasminogen activator (tPA) plays important roles in the brain after excitotoxic injury. This study was conducted to produce transgenic pig harboring human tissue plasminogene activator (htPA) gene. Recombinent htPA(rhtPA) genes containing bovine-β-casein promoter (bBC) were prepared for microinjection and testified the expression level of htPA protein from the Chinese hamster ovary (CHO) cell lines before NDA microinjection into the porcine pronuclei. (omitted)

  • PDF

Effects of the cis-Acting Element in the 3' End of Porcine $\beta$-Casein Gene on the Expression in Mammary Epithelial Cells (돼지 $\beta$-Casein 유전자의 3' 말단 부위의 cis-Acting Element가 유선 상피 세포내의 발현에 미치는 영향)

  • Lee, Hwi-Cheul;Kim, Byoung-Ju;Byun, Sung-June;Lee, Seung-Hoon;Kim, Min-Ji;Chung, Hee Kyoung;Lee, Hyun-Gi;Jo, Su-Jin;Chang, Won-Kyong;Park, Jin-Ki;Lee, Poong-Yeon
    • Reproductive and Developmental Biology
    • /
    • v.32 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • Tissue-specific and temporal regulation of milk protein gene expression is advantageous when creating transgenic animal that produces foreign protein into milk. Gene expression, i.e. protein production, is regulated not only by promoter strength but also mRNA stability. Especially, poly A tail length by polyadenylation affects in vivo and in vitro mRNA stability and translation efficiency of the target gene. In the present study, nucleotide sequence of 3'-UTR was analyzed to evaluate the effects of mRNA stability on the target gene expression. Based on the poly A signal of 3' -untranslated region (UTR), nucleotide sequences of putative cytoplasmic polyadenylation elements (CPEs) and downstream elements (DSEs: U-rich, G-rich, GU-rich) were analyzed and used to construct 15 luciferase reporter vectors. Each vector was transfected to HC11 and porcine mammary gland cell (PMGC) and measured for dual luciferase expression levels after 48 hours of incubation. Luciferase expression was significantly higher in construct #6 (with CPE 2, 3 and DSE 1 of exon 9) and #11 (with CPE 2, 3 and DSE 1, 2 and 3 of exon 9) than construct #1 in the PMGC. These results suggest that expression of target genes in PMGC may be effectively expressed by using the construct #6 and #11 on production of transgenic pig.