• Title/Summary/Keyword: Porcelain-Fused-to-Metal Firing(PFM)

Search Result 6, Processing Time 0.022 seconds

Microstructure and Mechanical Properties of Ni-Cr-Mo Based Dental Cast Iron for Porcelain-Fused-to-Metal Firing (도재소부용 Ni-Cr-Mo계 치과용 합금의 미세조직 및 기계적성질)

  • Choi, D.C.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.3
    • /
    • pp.120-125
    • /
    • 2007
  • The microstructure, mechanical properties and melting range of Ni-Cr-Mo based alloys were investigated to develop Be-free Ni-Cr-Mo base dental alloys for Porcelain-Fused-to-Metal Firing(PFM). All as-cast alloys showed dendritic structure. Rockwell hardness of 20Cr7Mo was increased with addition of Si and Ti. On the contrary, it was decreased with addition of Co. The duplex alloying elemental addition such as 3Co + xTi, 2Si + xCo and 2Si + xTi to 20Cr7Mo resulted in much increase of hardness. Rockwell hardness and compressive strength for 20Cr3CoSiTi or 17Cr6CoSiTi alloy that add Si-Ti had similar values compared to the commercial alloys. Melting range for 20Cr3CoSiTi and 17Cr6CoSiTi alloy that add Si-Ti showed similar or lower than commercial alloys. In conclusion, 20Cr3CoSiTi and 17Cr6CoSiTi alloys can be applied for commercial use.

A Study on Metal-Porcelain Fusing Layer in Porcelain Fused to High Gold Alloy (도재소부용 고금함유금합금의 연구 - 도재 결합층을 중심으로 -)

  • Lee, Kee-Dae;Kwak, Dong-Ju
    • Journal of Technologic Dentistry
    • /
    • v.31 no.3
    • /
    • pp.15-20
    • /
    • 2009
  • The success of the porcelain fused to gold alloy restoration depends not only on the choice of materials but to a larger degree on the technical skills. The porcelain fused to metal(PFM) alloys containing gold are commonly use for dental purposes in dental laboratory. The gold-colored alloys contain primarily gold, platinum, palladium, and silver, with minimum amounts of such metals as tin, iridium, or titanium. The purpose of this study is on the metal-porcelain fusing layer in porcelain fused to high gold alloy Principal results are as follows. The hardness number(Hv) of PFG is respectively $140.2{\pm}12.6$ in as-casted, $164.3{\pm}14.3$ in heat-treated, $186.6{\pm}20.4$ in fired-treated. The formation of the fusing(intermediate) layer caused by components fusing the interface of porcelain and gold alloy. The main components of the fusing(intermediate) layer are Na, Al, Si, K, Zn, Zr and Ce. The intermediate layer formed by the 2nd firing is more larger than the intermediate layer formed by the 1st firing.

  • PDF

The effect of the gold based bonding agents on the bond between Ni-Cr alloys and ceramic restorations (Ni-Cr합금과 도재간의 결합력에 gold-based bonding agent가 미치는 영향)

  • Lee, Jung-Hwan;Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.213-223
    • /
    • 2007
  • The success of a porcelain fused to metal (PFM) restoration depends upon the quality of the porcelain-metal bond. The adhesion between metal substructure and dental porcelain is related to the diffusion of oxygen to the reaction layer formed on cast-metal surface during firing. The purposed of this investigation was to study the effects of gold based bonding agent on Ni-Cr alloy-ceramic adhesion between porcelain matrix, gold based bonding agent and metal substructure interface. gold based bonding agent have been applied as an intermediate layer between a metal substructure and a ceramic coating. gold based bonding agent(Aurofilm NP, Metalor, Swiss) was applied on Ni-Cr alloy surface by four method. Surfaces only air abraded with 110${\beta}\neq$ Al2O3 particles were used as control. metal ceramic adhesion was evaluated by a biaxial flexure test(N=5) and volume fraction of adherent porcelain was determined by SEM/EDS analysis. Result of this study suggest that the layering sequence of gold based bonding agent is very important and can improve porcelain adherence to PFM.

  • PDF

An analysis of shear bond strength of Co-Cr alloy of porcelain fused to metal and ceramic (도재용착용 비귀금속 합금(Co-Cr)과 세라믹의 소성술식에 따른 전단결합강도 분석)

  • Im, Joong-Jae
    • Journal of Technologic Dentistry
    • /
    • v.39 no.3
    • /
    • pp.153-159
    • /
    • 2017
  • Purpose: In this study, a corresponding porcelain coating material was applied to dental Co-Cr metal among PFM. Methods: The bonding strength of the fired specimens was measured by a three-point flexural rigidity test. SEM/EDS was used to observe the surface component of specimens. Results: First, All groups were higher than the minimum bonding strength of 25 MPa specified in ISO 9693 for dental metal-ceramics specimens. Second, The bonding strength of control group(WO) is 44.64 MPa. Experimental group DM was 35.45 MPa and DP was 31.82 MPa(P<0.05). Tukey's HSD tests results have shown that the bonding strength in control group(WO) is higher than that of experimental group(DM, DP). Third, In the case of metal - porcelain bonding strength, the application of opaque porcelain and firing were higher than those of the group treated with degassing process. Conclusion: The bonding strength was higher when the powder opaque porcelain was applied than the paste opaque porcelain.

A study on the difference of Ceramic fracture strength according to the metal depth (금속의 두께가 도재의 파절강도에 미치는 영향)

  • Shin, Mu-Hak;Choi, Un-Jae;Kim, Yoong-Won
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.89-95
    • /
    • 2005
  • In the manufacture of ceramo-metal crown, difference of fracture strength according to the metal depth has been known to be an important influence on enough intensity and internal stress to endure an occlusion-pressure as well as aesthetics of rehabilitating similar colour such as natural teeth. Depth of ceramic material could be determined by that of metal in three groups: first case of thin depth, second case of thick depth, and third case of constant depth. For the enhancement of the fracture strength between metal and ceramic materials and aesthetic satisfaction, a study on the bonding force, fracture strength, and aesthetics have been required more. In this study, therefore metal coping were made in three groups of A, B and C by using both ceramic powder of Norithe and metal of Columbium, which have been used primarily in the market. A group was made in $0.2mm\times10mm\times10mm$, B group was made in $0.4mm\times10mm\times10mm$, and, C group was made in $0.8mm\times10mm\times10mm$, respectively. The number of metal coping in each group was 10, and total sample numbers used in this study were 30 metal copings. After these metal coping tissue were in the process of build-up in 1.5mm constant depth of porcelain, firing, and glazing, the fracture strength about each metal coping tissue was investigated using oil press. It was found that the average values of durable occlusion pressure for separation of ceramic material in the porcelain fused to metal crown (PFM) in the each group showed the increasing order of A group (30 bar), B group (42 bar), and C group (44 bar), respectively. Proper depth of metal coping in the PFM was considered to be 0.4mm in the B group because this metal size showed higher durable property to the occlusion pressure and better coupling strength in the ceramo-metal crown.

  • PDF

The Effect of a Au Based Bonding Agent Coating on Non-Precious Metals-Ceramic Bond Strength (비귀금속 합금에 적용한 Au Based Bonding Agent가 금속-도재 결합에 미치는 영향)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.4
    • /
    • pp.405-412
    • /
    • 2009
  • The purpose of this study investigated the effect of Au coating on adhesion between porcelain matrix and metal substructure interface. Titanium, Ni-Cr alloy and Co-Cr alloy are well known as proper metal for the dental restorations. The success of a porcelain fused to metal (PFM) restoration depends upon the quality of the porcelain-metal bond. However, adhesion between dental alloys and porcelain is related to diffusion of oxygen during ceramic firing. The excessive oxidized layers make hard adhesion between dental alloy and ceramic. Ni-Cr and Co-Cr specimens were divided into test and a control group and Titanium specimens were divided into three test groups and a control group. Each group had 20 specimens. The adhesion characteristics of porcelain and metal with Au coating layer and without Au coating layer were observed with scanning electron microscopy(SEM). The adhesion was evaluated by a biaxial flexure test and volume fraction of adherent porcelain was determined by SEM/EDS analysis. Result of this study suggest that Au coating layer is effective barrier to diffuse oxide layer completely protect non-precious alloys from oxidation during the porcelain firing. The SEM photomicrographs of cross-section specimens showed a smooth interface between Au coating layer and metals and porcelain which suggested proper chemical bonding, and no gap, porosity were observed. The mode of failure was mainly adhesive for Ti tested specimens, but mixed failures with adhesive and cohesive were observed in Ni-Cr and Co-Cr specimens. The adhesion between non-precious metals and porcelain would not be improved by Au coating agent. However, It is suggested that the continuous study is required further investigation and development.

  • PDF