• Title/Summary/Keyword: Population pharmacokinetic

Search Result 43, Processing Time 0.02 seconds

A Statistical Approach to the Pharmacokinetic Model (집단 약동학 모형에 대한 통계학적 고찰)

  • Lee, Eun-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.511-520
    • /
    • 2010
  • The Pharmacokinetic model is a complex nonlinear model with pharmacokinetic parameters that is some-times represented by a complex form of differential equations. A population pharmacokinetic model adds individual variability using the random effects to the pharmacokinetic model. It amounts to the nonlinear mixed effect model. This paper, reviews the population pharmacokinetic model from a statistical viewpoint; in addition, a population pharmacokinetic model is also applied to the real clinical data along with a review of the statistical meaning of this model.

Population Pharmacokinetic Characteristics of Levosulpiride and Terbinafine in Healthy Male Korean Volunteers

  • Lee, Yong-Bok
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.84-87
    • /
    • 2003
  • The purposes of this study were to evaluate the population pharmacokinetics of levosulpiride and terbinafine according to several pharmacokinetic models and to investigate the influence of characteristics of subjects such as age, body weight, height and serum creatinine concentration on the pharmacokinetic parameters of levosulpiride and terbinafine, respectively. (omitted)

  • PDF

Population Pharmacokinetic Modeling of Vancomycin in Patients with Cancer (암환자에게 반코마이신의 집단약물동태학 모델연구)

  • 최준식;민영돈;범진필
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • The purpose of this study was to determine pharmacokinetic parameters of vancomycin using peak and trough plasma level (PTL) and Bayesian analysis in 20 Korean normal volunteers, 16 gastric cancer and 12 lymphoma patients and also using the compartment model dependent (nonlinear least squares regression: NLSR) and compartment model independent (Lagrange) analysis in 10 ovarian cancer patients. Nonparametric expected maximum (NPEM) algorithm for calculation of the population pharmacokinetic parameters was used, and these parameters were applied for clinical pharmacokinetic parameters by Bayesian analysis. Vancomycin was administered as dose of 1.0 g every 12 hrs for 3 days by IV infusion over 60 minutes in normal volunteers, gastric cancer and lymphoma patients. Population pharmacokinetic parameters, K and Vd in gastric cancer and lymphoma patients using NPEM algorithm were $0.158{\pm}0.014{\;}hr^{-1},{\;}0.630{\pm}0.043{\;}L/kg{\;}and{\;}0.131{\pm}0.0261{\;}hr^{-1},{\;}0.631{\pm}0.089{\;}L/kg$ respectively. The K and Vd in gastric cancer and lymphoma patients using Bayesian analysis were $0.151{\pm}0.027,{\;}0.126{\pm}0.056{\;}hr^{-1}{\;}and{\;}0.62{\pm}0.105,{\;}0.63{\pm}0.095{\;}L/kg$. The K and Vd in ovarian cancer patient using the NLSR and Lagrange analysis were $0.109{\pm}0.008,{\;}0.126{\pm}0.012{\;}hr^{-1}{\;}and{\;} 0.76{\pm}0.08,{\;}0.69{\pm}0.19{\;}L/kg$, respectively. It is necessary for effective dosage regimen of vancomycin in cancer patients to use these population parameters.

  • PDF

Model Validation Methods of Population Pharmacokinetic Models (집단 약동학 모형을 위한 모형 진단과 적합도 검정에 대한 고찰)

  • Lee, Eun-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.139-152
    • /
    • 2012
  • The result of the analysis of a population pharmacokinetic model can directly influence the decision of the dose level applied to the targeted patients. Therefore the validation procedure of the final model is very important in this area. This paper reviews the validation methods of population pharmacokinetic models from a statistical viewpoint. In addition, the whole procedure of the analysis of population pharmacokinetics, from the base model to the final model (that includes various validation procedures for the final model) is tested with real clinical data.

Clinical Pharmacokinetics of Vancomycin in Gastric Cancer Patients (위암 환자에서 반코마이신의 임상약물동태)

  • Choi, Jun-Shik;Chang, Il-Hyo;Burm, Jin-Pil
    • YAKHAK HOEJI
    • /
    • v.41 no.2
    • /
    • pp.195-202
    • /
    • 1997
  • The purpose of this study was to determine pharmacokinetic parameters of vancomycin using two point calculation(TPC) and Bayesian methods in 16 Korean normal volunteers and 15 g astric cancer patients. Nonparametric expected maximum(NPEM) algorithm for calculation of population pharmacokinetic parameter was used, and these parameters were applied for clinical pharmacokinetic parameters by Bayesian analysis. Vancomycin was administered 1.0g every 12 hrs for 3 days by IV infusion over 60 minutes. The volume of distribution(Vd), elimination rate constant(Kel) and total body clearance(CLt) of vancomycin in normal volunteers using TPC method were $0.34{\pm}0.06 L/kg,\; 0.19{\pm}0.01 hr^{-1}$ and $4.08 {\pm} 0.93 L/hr$, respectively, The Vd, Kel and CLt of vancomycin in gastric cancer patients using TPC method were $0.46 {\pm} 0.06 L/kg, 0.17{\pm}0.02 hr^{-1}$ and $4.84 {\pm} 0.57 L/hr$ respectively. There were significant differences(p<0.05) in Vd. Kel and CLt between normal volunteers and gastric cancer patients. Polpulation pharmacokinetic parameter, the slope(KS) of the relationship beetween Kel versus creatinine Clearance, and the Vd were $0.00157{\pm}0.00029(hr{\cdot}mL/min/1.73m^2)^{-1},\; 0.631 {\pm} 0.0036 L/kg$ in gastric cancer patients using NPEM algorithm respectively. The Vd and Kel were $0.63{\pm}0.005 L/kg, 0.15 {\pm}0.027 hr^{-1}$ for gastric cancer patients using Bayesian method. There were significant differences(p<0.05) in vancomycin pharmacokinetics between Bayesian and TPC methods. It is considered that the population parameter in the patient population is necessary for effective Bayesian method in clinical pharmacy practise.

  • PDF

Clinical Pharmacokinetics of Gentamicin in Gastrointestinal Surgical Patients (위장관 수술환자에서 겐타마이신의 임상약물동태)

  • Choi, Jun-Shik;Moon, Hong-Seog;Choi, In;Burm, Jin-Pil
    • YAKHAK HOEJI
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • The purpose of this investigation was to determine pharmacokinetic parameters of gentamicin using nonlinear least square regression(NLSR) and Bayesian analysis in Korean normal volunteers and gastrointestinal surgical patients. Nonparametric expected maximum(NPEM) method for population pharmacokinetic parameters was used. Gentamicin was administered every 8 hours for 3 days by infusion over 30 minutes. The volume of distribution(V) and elimination rate constant(K) of gentamicin were $0.226{\pm}0.032,\;0.231{\pm}0.063L/Kg\;and\;0.357{\pm}0.024,\;0.337{\pm}0.041hr^{-1}$ for normal volunteers and gastrointestinal surgical patients using NLSR analysis. Population pharmacokinetic parameters, KS and VS were $0.00344{\pm}0.00049(hr{\cdot}ml/min/1.73m^2)^{-1}\;and\;0.214{\pm}0.0502L/Kg$ for gastrointestinal surgical patients using NPEM method. The V and K were $0.216{\pm}0.048L/Kg\;and\;0.336{\pm}0.043hr^{-1}$ for gastrointestinal surgical patients using Bayesian analysis. There were no differences in gentamicin pharmacokinetics between NLSR and Bayesian analysis in gastrointestinal surgical patient.

  • PDF

Population Pharmacokinetics of Cyclosporine after Hematopoietic Stem Cell Transplantation in Pediatric Patients (조혈모세포 이식을 받은 소아 환자에서 cyclosporine의 집단 약동학 분석)

  • Cho, So Yeon;Kang, Wonku;Yee, Jeong;Kim, Jae Youn;An, Sook Hee;Gwak, Hye Sun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.28 no.1
    • /
    • pp.24-29
    • /
    • 2018
  • Background: Cyclosporine is an immunosuppressive agent used to treat and prevent graft versus host reaction (GVHR)-a complication associated with stem cell transplantation. This study aimed to develop a population pharmacokinetic model of cyclosporine and investigate factors affecting cyclosporine clearance in pediatric hematopoietic stem cell transplant patients. Methods: A total of 650 cyclosporine concentrations recorded in 65 patients who underwent hematopoietic stem cell transplantation were used. Data including age, sex, weight, height, body surface area (BSA), type of disease, chemotherapy before stem cell transplantation, type of donor, serum creatinine levels, total bilirubin concentration, hematocrit value, and type of concomitant anti-fungal agents and methylprednisolone used were retrospectively collected. Data related to cyclosporine dosage, administration time, and blood concentration were also collected. All data were analyzed using the non-linear mixed effect model; a two-compartment model with first-order elimination was used. Results: The population pharmacokinetic model of cyclosporine using the NONMEM program was as follows: $CL(L/h)=5.9{\times}(BSA/1.2)^{0.9}$, V2 (L) = 54.5, Q (L/h) = 3.5, V3 (L) = 1080.0, $k_a(h^{-1})=0.000377$. BSA was selected as a covariate of cyclosporine clearance, which increased with an increase in BSA. Conclusion: A population pharmacokinetic model for Korean pediatric hematopoietic stem cell transplant patients was developed, and the important factor affecting cyclosporine clearance was found to be BSA. The model might contribute to the development of the most appropriate dosing regimen for cyclosporine. Further studies on population pharmacokinetics should be carried out, prospectively targeting pediatric patients.

Population Pharmacokinetics of Clarithromycin in Healthy Adult Korean (클라리스로마이신의 건강한 한국 성인에 대한 집단 약물동태)

  • 권광일;김호순;손수정
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.63-68
    • /
    • 2002
  • The purpose of this study was to estimate the population pharmacokinetics of clarithromycin in healthy adult Korean and to investigate the factors influencing the pharmacokinetics of clarithromycin. The population pharmacokinetic parameters of clarithromycin were calculated with the data from healthy adult Koreans. A total of 798 plasma concentrations obtained from 78 subjects after administration of a single oral dose of 250 mg or 500 mg were used for the modeling. The concentration-time data were fitted to a one-compartment open model assuming a first-order absorption and elimination with no lag time. The correlations between various factors [such as sex, age, height, weight, sect creatinine (Scr) and dose and pharmacokinetic parameters were estimated with stepwise linear recession analyses. The selected covariates were incorporated in the population model of NONMEM, and the importance of each covariate was investigated by means of backwards elimination. The apparent clearance (CL/F) was significantly correlated to Scr and sex, and the apparent volume of distribution (Vd/F) was significantly correlated to Scr and height in a nonlinear relationship. The population values of Ka was 1.8 h $r_{-1}$, CL/F was 37.71 L/hr, Vd/F was 200 L and t/ sub 1/2 / was 3.68 hrs for a male Korean with 170 m height and 1.0 mg/dL Scr.

Assay Error for Improved Pharmacokinetic Modeling and Simulation of Vancomycin (반코마이신의 약물동태학적 모델링과 시뮬레이션의 향상을 위한 분석오차)

  • Burm, Jin Pil
    • YAKHAK HOEJI
    • /
    • v.57 no.1
    • /
    • pp.32-36
    • /
    • 2013
  • The purpose of this study was to determine the influence of assay error for improved pharmacokinetic modeling and simulation of vancomycin on the Bayesian and nonlinear least squares regression analysis in 24 Korean gastric cancer patients. Vancomycin 1.0 g was administered intravenously over 1 hr every 12 hr. Three specimens were collected at 72 hr after the first dose from all patients at the following times, at 0.5 hr before regularly scheduled infusion, at 0.5 hr and 2 hr after the end of 1 hr infusion. Serum vancomycin levels were analyzed by fluorescence polarization immunoassay technique with TDX-FLX. The standard deviation (SD) of the assay over its working range had been determined at the serum vancomycin concentrations of 0, 20, 40, 60, 80 and $120{\mu}g/ml$ in quadruplicate. The polynomial equation of vancomycin assay error was found to be SD $({\mu}g/ml)=0.0224+0.0540C+0.00173C^2$ ($R^2=0.935$). There were differences in the influence of weight with vancomycin assay error on pharmacokinetic parameters of vancomycin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynomial equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result suggests the improvement of dosage regimens for the better and safer care of patients receiving vancomycin.