• Title/Summary/Keyword: Population management genetic algorithm

Search Result 45, Processing Time 0.031 seconds

A Looping Population Learning Algorithm for the Makespan/Resource Trade-offs Project Scheduling

  • Fang, Ying-Chieh;Chyu, Chiuh-Cheng
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.171-180
    • /
    • 2009
  • Population learning algorithm (PLA) is a population-based method that was inspired by the similarities to the phenomenon of social education process in which a diminishing number of individuals enter an increasing number of learning stages. The study aims to develop a framework that repeatedly applying the PLA to solve the discrete resource constrained project scheduling problem with two objectives: minimizing project makespan and renewable resource availability, which are two most common concerns of management when a project is being executed. The PLA looping framework will provide a number of near Pareto optimal schedules for the management to make a choice. Different improvement schemes and learning procedures are applied at different stages of the process. The process gradually becomes more and more sophisticated and time consuming as there are less and less individuals to be taught. An experiment with ProGen generated instances was conducted, and the results demonstrated that the looping framework using PLA outperforms those using genetic local search, particle swarm optimization with local search, scatter search, as well as biased sampling multi-pass algorithm, in terms of several performance measures of proximity. However, the diversity using spread metric does not reveal any significant difference between these five looping algorithms.

Optimum redundancy design for maximum system reliability: A genetic algorithm approach (최대 시스템 신뢰도를 위한 최적 중복 설계: 유전알고리즘에 의한 접근)

  • Kim Jae Yun;Shin Kyoung Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.125-139
    • /
    • 2004
  • Generally, parallel redundancy is used to improve reliability in many systems. However, redundancy increases system cost, weight, volume, power, etc. Due to limited availability of these resources, the system designer has to maximize reliability subject to various constraints or minimize resources while satisfying the minimum requirement of system reliability. This paper presents GAs (Genetic Algorithms) to solve redundancy allocation in series-parallel systems. To apply the GAs to this problem, we propose a genetic representation, the method for initial population construction, evaluation and genetic operators. Especially, to improve the performance of GAs, we develop heuristic operators (heuristic crossover, heuristic mutation) using the reliability-resource information of the chromosome. Experiments are carried out to evaluate the performance of the proposed algorithm. The performance comparison between the proposed algorithm and a pervious method shows that our approach is more efficient.

A Hybrid Genetic Algorithm for Scheduling of the Panel Block Assembly Shop in Shipbuilding (선각 평블록 조립공장 일정계획을 위한 혼합 유전 알고리즘)

  • 하태룡;문치웅;주철민;박주철
    • Korean Management Science Review
    • /
    • v.17 no.1
    • /
    • pp.135-144
    • /
    • 2000
  • This paper describes a scheduling problem of the panel block assembly shop in a shipbuilding industry. Because the shipbuilding is a labor intensive industry the most important consideration in a panel block assembly shop is the workload balancing. which balances man-hour weight and welding length and so on. It should be determined assembly schedule and workstation considering a daily load balancing and a workstation load balancing simultaneously. To solve the problem we develop a hybrid genetic algorithm. Hybrid genetic algorithm proposed in this paper consists of two phases. The first phase uses the heuristic method to find a initial feasible solution which provides a useful information about optimal solution. The second phase proposes the genetic algorithm to derive the optimal solution with the initial population consisting of feasible solutions based on the initial solution. Finally we carried out computational experiments for this load balancing problem which indicate that developed method is effective for finding good solutions.

  • PDF

Multi-Stage Supply Chain Network Design Using a Cooperative Coevolutionary Algorithm Based on a Permutation Representation (순열 표현 기반의 협력적 공진화 알고리즘을 사용한 다단계 공급사슬 네트워크의 설계)

  • Han, Yong-Ho
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.21-34
    • /
    • 2012
  • This paper addresses a network design problem in a supply chain system that involves locating both plants and distribution centers, and determining the best strategy for distributing products from the suppliers to the plants, from the plants to the distribution centers and from the distribution centers to the customers. This paper suggests a cooperative coevolutionary algorithm (CCEA) approach to solve the model. First, the problem is decomposed into three subproblems for each of which the chromosome population is created correspondingly. Each chromosome in each population is represented as a permutation denoting the priority. Then an algorithm generating a solution from the combined set of chromosomes from each population is suggested. Also an algorithm evaluating the performance of a solution is suggested. An experimental study is carried out. The results show that our CCEA tends to generate better solutions than the previous CCEA as the problem size gets larger and that the permutation representation for chromosome used here is better than other representation.

A Cooperative Coevolutionary Algorithm for Optimizing a Reverse Logistics Network Model (역물류 네트워크 모델의 최적화를 위한 협력적 공진화 알고리즘)

  • Han, Yong-Ho
    • Korean Management Science Review
    • /
    • v.27 no.3
    • /
    • pp.15-31
    • /
    • 2010
  • We consider a reverse logistics network design problem for recycling. The problem consists of three stages of transportation. In the first stage products are transported from retrieval centers to disassembly centers. In the second stage disassembled modules are transported from disassembly centers to processing centers. Finally, in the third stage modules are transported from either processing centers or a supplier to a manufacturer, a recycling site, or a disposal site. The objective is to design a network which minimizes the total transportation cost. We design a cooperative coevolutionary algorithm to solve the problem. First, the problem is decomposed into three subproblems each of which corresponds to a stage of transportation. For subproblems 1 and 2, a population of chromosomes is constructed. Each chromosome in the population is coded as a permutation of integers and an algorithm which decodes a chromosome is suggested. For subproblem 3, an heuristic algorithm is utilized. Then, a performance evaluation procedure is suggested which combines the chromosomes from each of two populations and the heuristic algorithm for subproblem 3. An experiment was carried out using test problems. The experiments showed that the cooperative coevolutionary algorithm generally tends to show better performances than the previous genetic algorithm as the problem size gets larger.

Single-Machine Total Completion Time Scheduling with Position-Based Deterioration and Multiple Rate-Modifying Activities

  • Kim, Byung-Soo;Joo, Cheol-Min
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2011
  • In this paper, we study a single-machine scheduling problem with deteriorating processing time of jobs and multiple rate-modifying activities which reset deteriorated processing time to the original processing time. In this situation, the objective function is to minimize total completion time. First, we formulate an integer programming model. Since the model is difficult to solve as the size of real problem being very large, we design an improved genetic algorithm called adaptive genetic algorithm (AGA) with spontaneously adjusting crossover and mutation rate depending upon the status of current population. Finally, we conduct some computational experiments to evaluate the performance of AGA with the conventional GAs with various combinations of crossover and mutation rates.

A Study on the Genetic Algorithm of Thread's Connection Method for Intarsia Sweater Weaving (인타샤(Intarsia) 스웨터 직조를 위한 실 연결 방법의 유전자 알고리즘 해법 연구)

  • Huh, Sang Moo;Kim, Woo Je
    • Korean Management Science Review
    • /
    • v.32 no.1
    • /
    • pp.35-47
    • /
    • 2015
  • The purpose of this paper is to find an optimal weaving connection method of sweater threads while weaving intarsia sweater by the genetic algorithm. The objective function was devised to minimize labor cost and lessen the amount of thread usage. In order to create the parental population group in the genetic algorithm, we developed five thread connection methods. Besides, elite chromosome screening methods for the offspring group was selected both to the whole chromosome thread elite and to a color-coded elite thread chromosome. Commonly used diamond pattern in Intarsia sweater manufacturing was applied to the experiments. The experimental results showed that thread system saved the labor and material costs than woven method under the existing software. When weaving Intarsia sweater in the field, we can apply the developed genetic algorithm to improve productivity of weaving connection method.

An Adaptive Genetic Algorithm for a Dynamic Lot-sizing and Dispatching Problem with Multiple Vehicle Types and Delivery Time Windows (다종의 차량과 납품시간창을 고려한 동적 로트크기 결정 및 디스패칭 문제를 위한 자율유전알고리즘)

  • Kim, Byung-Soo;Lee, Woon-Seek
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2011
  • This paper considers an inbound lot-sizing and outbound dispatching problem for a single product in a thirdparty logistics (3PL) distribution center. Demands are dynamic and finite over the discrete time horizon, and moreover, each demand has a delivery time window which is the time interval with the dates between the earliest and the latest delivery dates All the product amounts must be delivered to the customer in the time window. Ordered products are shipped by multiple vehicle types and the freight cost is proportional to the vehicle-types and the number of vehicles used. First, we formulate a mixed integer programming model. Since it is difficult to solve the model as the size of real problem being very large, we design a conventional genetic algorithm with a local search heuristic (HGA) and an improved genetic algorithm called adaptive genetic algorithm (AGA). AGA spontaneously adjusts crossover and mutation rate depending upon the status of current population. Finally, we conduct some computational experiments to evaluate the performance of AGA with HGA.

A Taguchi Approach to Parameter Setting in a Genetic Algorithm for General Job Shop Scheduling Problem

  • Sun, Ji Ung
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.119-124
    • /
    • 2007
  • The most difficult and time-intensive issue in the successful implementation of genetic algorithms is to find good parameter setting, one of the most popular subjects of current research in genetic algorithms. In this study, we present a new efficient experimental design method for parameter optimization in a genetic algorithm for general job shop scheduling problem using the Taguchi method. Four genetic parameters including the population size, the crossover rate, the mutation rate, and the stopping condition are treated as design factors. For the performance characteristic, makespan is adopted. The number of jobs, the number of operations required to be processed in each job, and the number of machines are considered as noise factors in generating various job shop environments. A robust design experiment with inner and outer orthogonal arrays is conducted by computer simulation, and the optimal parameter setting is presented which consists of a combination of the level of each design factor. The validity of the optimal parameter setting is investigated by comparing its SN ratios with those obtained by an experiment with full factorial designs.

Multi-Item Inventory Problems Revisited Using Genetic Algorithm

  • Das, Prasun
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.29-46
    • /
    • 2007
  • This paper makes an attempt to compare the two important methods for finding solutions of multi-item inventory problem with more than one conflicting objectives. Panda et al.[9] discusses a distance-based method to find the best possible compromise solution with variation of priority under the given weight structure. In this paper, the problem in [9] is revisited through the Pareto-optimal front of genetic algorithm with the help of a situation of retail stocking of FMCG business. The advantages of using the solutions from the perspective of the decision maker obtained through multi-objective optimization are highlighted in terms of population search, weighted goals and priority structure, cost, set of compromise solutions along with prevention of stock-out situation.