• Title/Summary/Keyword: Popularity Prediction

Search Result 52, Processing Time 0.02 seconds

Predicting the Popularity of Post Articles with Virtual Temperature in Web Bulletin (웹게시판에서 가상온도를 이용한 게시글의 인기 예측)

  • Kim, Su-Do;Kim, So-Ra;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.19-29
    • /
    • 2011
  • A Blog provides commentary, news, or content on a particular subject. The important part of many blogs is interactive format. Sometimes, there is a heated debate on a topic and any article becomes a political or sociological issue. In this paper, we proposed a method to predict the popularity of an article in advance. First, we used hit count as a factor to predict the popularity of an article. We defined the saturation point and derived a model to predict the hit count of the saturation point by a correlation coefficient of the early hit count and hit count of the saturation point. Finally, we predicted the virtual temperature of an article using 4 types(explosive, hot, warm, cold). We can predict the virtual temperature of Internet discussion articles using the hit count of the saturation point with more than 70% accuracy, exploiting only the first 30 minutes' hit count. In the hot, warm, and cold categories, we can predict more than 86% accuracy from 30 minutes' hit count and more than 90% accuracy from 70 minutes' hit count.

Korean and English Sentiment Analysis Using the Deep Learning

  • Ramadhani, Adyan Marendra;Choi, Hyung Rim;Lim, Seong Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.3
    • /
    • pp.59-71
    • /
    • 2018
  • Social media has immense popularity among all services today. Data from social network services (SNSs) can be used for various objectives, such as text prediction or sentiment analysis. There is a great deal of Korean and English data on social media that can be used for sentiment analysis, but handling such huge amounts of unstructured data presents a difficult task. Machine learning is needed to handle such huge amounts of data. This research focuses on predicting Korean and English sentiment using deep forward neural network with a deep learning architecture and compares it with other methods, such as LDA MLP and GENSIM, using logistic regression. The research findings indicate an approximately 75% accuracy rate when predicting sentiments using DNN, with a latent Dirichelet allocation (LDA) prediction accuracy rate of approximately 81%, with the corpus being approximately 64% accurate between English and Korean.

Satellite-based Drought Forecasting: Research Trends, Challenges, and Future Directions

  • Son, Bokyung;Im, Jungho;Park, Sumin;Lee, Jaese
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.815-831
    • /
    • 2021
  • Drought forecasting is crucial to minimize the damage to food security and water resources caused by drought. Satellite-based drought research has been conducted since 1980s, which includes drought monitoring, assessment, and prediction. Unlike numerous studies on drought monitoring and assessment for the past few decades, satellite-based drought forecasting has gained popularity in recent years. For successful drought forecasting, it is necessary to carefully identify the relationships between drought factors and drought conditions by drought type and lead time. This paper aims to provide an overview of recent research trends and challenges for satellite-based drought forecasts focusing on lead times. Based on the recent literature survey during the past decade, the satellite-based drought forecasting studies were divided into three groups by lead time (i.e., short-term, sub-seasonal, and seasonal) and reviewed with the characteristics of the predictors (i.e., drought factors) and predictands (i.e., drought indices). Then, three major challenges-difficulty in model generalization, model resolution and feature selection, and saturation of forecasting skill improvement-were discussed, which led to provide several future research directions of satellite-based drought forecasting.

Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics

  • Jo, Young Beom;Park, So-Hyun;Park, Juryong;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.752-762
    • /
    • 2021
  • The Smoothed Particle Hydrodynamics is one of the most widely used mesh-free numerical method for thermo-fluid dynamics. Due to its Lagrangian nature and simplicity, it is recently gaining popularity in simulating complex physics with large deformations. In this study, the 3D single/two-phase numerical simulations are performed on the Liquid Metal Reactor (LMR) centralized sloshing benchmark experiment using the SPH parallelized using a GPU. In order to capture multi-phase flows with a large density ratio more effectively, the original SPH density and continuity equations are re-formulated in terms of the normalized-density. Based upon this approach, maximum sloshing height and arrival time in various experimental cases are calculated by using both single-phase and multi-phase SPH framework and the results are compared with the benchmark results. Overall, the results of SPH simulations show excellent agreement with all the benchmark experiments both in qualitative and quantitative manners. According to the sensitivity study of the particle-size, the prediction accuracy is gradually increasing with decreasing the particle-size leading to a higher resolution. In addition, it is found that the multi-phase SPH model considering both liquid and air provides a better prediction on the experimental results and the reality.

Application of Hidden Markov Model Using AR Coefficients to Machine Diagnosis (AR계수를 이용한 Hidden Markov Model의 기계상태진단 적용)

  • 이종민;황요하;김승종;송창섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.48-55
    • /
    • 2003
  • Hidden Markov Model(HMM) has a doubly embedded stochastic process with an underlying stochastic process that can be observed through another set of stochastic processes. This structure of HMM is useful for modeling vector sequence that doesn't look like a stochastic process but has a hidden stochastic process. So, HMM approach has become popular in various areas in last decade. The increasing popularity of HMM is based on two facts : rich mathematical structure and proven accuracy on critical application. In this paper, we applied continuous HMM (CHMM) approach with AR coefficient to detect and predict the chatter of lathe bite and to diagnose the wear of oil Journal bearing using rotor shaft displacement. Our examples show that CHMM approach is very efficient method for machine health monitoring and prediction.

Text Mining and Sentiment Analysis for Predicting Box Office Success

  • Kim, Yoosin;Kang, Mingon;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4090-4102
    • /
    • 2018
  • After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.

Predicting Relative Superiority of TV Drama First Episodes based on the Quantitative Competency Index of the Cast and Crew (TV드라마 참여 인물의 계량 능력지표에 기반한 첫 회 시청률 상대적 우위 예측)

  • Ju, Sang Phil;Hong, June Seok;Kim, Wooju
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.6
    • /
    • pp.179-191
    • /
    • 2019
  • It is not easy to predict the return on investment in the content business, and there is no index to evaluate cast & crew. The absolute number of TV ratings is steadily declining, but there is no substitute index yet. In this study, we tried to predict the relative popularity of the drama by designing the relative superiority of the individual drama viewership as the response variable and designing the relative superiority of the drama participants as the explanatory variables. We used various machine learning algorithms and added explanatory variables that were found to be useful in previous studies. As a result, with properly combined explanatory variables, a high prediction accuracy of 84% is obtained. In this study, we intend to promote the investment efficiency of the entire contents industry by predicting the relative popularity of the contents.

Time-aware Collaborative Filtering with User- and Item-based Similarity Integration

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.149-155
    • /
    • 2022
  • The popularity of e-commerce systems on the Internet is increasing day by day, and the recommendation system, as a core function of these systems, greatly reduces the effort to search for desired products by recommending products that customers may prefer. The collaborative filtering technique is a recommendation algorithm that has been successfully implemented in many commercial systems, but despite its popularity and usefulness in academia, the memory-based implementation has inaccuracies in its reference neighbor. To solve this problem, this study proposes a new time-aware collaborative filtering technique that integrates and utilizes the neighbors of each item and each user, weighting the recent similarity more than the past similarity with them, and reflecting it in the recommendation list decision. Through the experimental evaluation, it was confirmed that the proposed method showed superior performance in terms of prediction accuracy than other existing methods.

Prediction of Sleep Stages and Estimation of Sleep Cycle Using Accelerometer Sensor Data (가속도 센서 데이터 기반 수면단계 예측 및 수면주기의 추정)

  • Gang, Gyeong Woo;Kim, Tae Seon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1273-1279
    • /
    • 2019
  • Though sleep polysomnography (PSG) is considered as a golden rule for medical diagnosis of sleep disorder, it is essential to find alternative diagnosis methods due to its cost and time constraints. Recently, as the popularity of wearable health devices, there are many research trials to replace conventional actigraphy to consumer grade devices. However, these devices are very limited in their use due to the accessibility of the data and algorithms. In this paper, we showed the predictive model for sleep stages classified by American Academy of Sleep Medicine (AASM) standard and we proposed the estimation of sleep cycle by comparing sensor data and power spectrums of δ wave and θ wave. The sleep stage prediction for 31 subjects showed an accuracy of 85.26%. Also, we showed the possibility that proposed algorithm can find the sleep cycle of REM sleep and NREM sleep.

Fatigue performance and life prediction methods research on steel tube-welded hollow spherical joint

  • Guo, Qi;Xing, Ying;Lei, Honggang;Jiao, Jingfeng;Chen, Qingwei
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • The grid structures with welded hollow spherical joint (WHSJ) have gained increasing popularity for use in industrial buildings with suspended cranes, and usually welded with steel tube (ST). The fatigue performance of steel tube-welded hollow spherical joint (ST-WHSJ) is however not yet well characterized, and there is little research on fatigue life prediction methods of ST-WHSJ. In this study, based on previous fatigue tests, three series of specimen fatigue data with different design parameters and stress ratios were compared, and two fatigue failure modes were revealed: failure at the weld toe of the ST and the WHSJ respectively. Then, S-N curves of nominal stress were uniformed. Furthermore, a finite element model (FEM) was validated by static test, and was introduced to assess fatigue behavior with the hot spot stress method (HSSM) and the effective notch stress method (ENSM). Both methods could provide conservative predictions, and these two methods had similar results. However, ENSM, especially when using von Mises stress, had a better fit for the series with a non- positive stress ratio. After including the welding residual stress and mean stress, analyses with the local stress method (LSM) and the critical distance method (CDM, including point method and line method) were carried out. It could be seen that the point method of CDM led to more accurate predictions than LSM, and was recommended for series with positive stress ratios.