• 제목/요약/키워드: Pool water

Search Result 547, Processing Time 0.02 seconds

Study for Reduction Effect of Pool Top Radiation in Research Reactor by Using Ion Exchanger of Hot Water Layer (고온층계통의 이온교환기에 의한 연구로 수조 상부 방사선의 저감효과에 대한 연구)

  • Park, Yong-Chul;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.40-47
    • /
    • 1999
  • A hot water layer (HWL hereinafter) was installed at the depth of 1.2 m from the pool surface to reduce the radiation level at the pool top. After the HWL system was improved by the replacement of the filter with the Ion Exchanger to capture the Na-24, to purify the pool water of HWL and finally to reduce the radiation at the pool top. It was confirmed by the performance test of the pump and the measurement of the pressure difference through the Ion Exchanger and the strainer, that the flow characteristics of HWL system was not adversely affected after the system modification. Also the flow analysis using the pressure loss coefficients of the Ion Exchanger and strainer, calculated by the Darcy formula, could predict the flow variations by pressure changes within $10\%$ error in comparison with the field test results. It was also confirmed that HWL was maintained with the depth of 1.2 m from the pool surface because each electric water heater was electrically and thermodynamically maintained at 30 kW and the temperature of HWL was maintained with $5^{\circ}C$ higher temperature than that of pool water. Finally, it was confirmed that the pool top radiation was saturated and stabilized below 10000 nG/hr within 24 hours as the ion exchanger captured the main nucleus, Na-24 and purified the pool water of HWL.

  • PDF

Analysis of Flow and Thermal Mixing Responses on Hot Water Discharge by Quencher Devices into an Annular Water pool (원환풀내에서 Quencher Device에 의한 고온수 분출로 일어나는 혼합유동에 관한 연구)

  • Choi, Seong-Seok;Kim, Jong-Bo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • One of the problems with the Boiling Water Reactor involves the flow and thermal mixings in the suppression water pool high pressure steam discharge into the pool in case of emergency core relief. Varioos heat sensitive devices and pumps for the reactor core cooling are installed in the middle of the suppression pool. Especially the pumps utilize pool water in order to cool the reactor core in emergency cases. In this case, the water temperature for the reactor cool ins should be below a certain temperature specified by the reactor design. In the present investigation, in other to determine the optimum locations of these pumping devices, numerical solutions have been obtained for the model to determine the f low mixing characteristics. Experimental investigations have also been carried out for the flow mixing and for the thermal mixing in the pool during the discharge. Considering that the discharge steam through the Quenching Device becomes hot water immediately in the water pool, the steam- equivalent hot water has been utilized. Examining these characteristices, it becomes possible to deform me the best locations for RCIC, LPCI , HPCI pumps in the suppression water pool for the emermency reactor core cooling.

  • PDF

Discharge header design inside a reactor pool for flow stability in a research reactor

  • Yoon, Hyungi;Choi, Yongseok;Seo, Kyoungwoo;Kim, Seonghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2204-2220
    • /
    • 2020
  • An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.

On the Distribution of Water Temperature in the Warm Water Pool. -On the Wudu Warm Water Pool- (온수지에서의 수온분포에 관한 연구 -우두온수지를 중심으로-)

  • 연규석;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.121-126
    • /
    • 1979
  • The objective of this study was to grasp the condition of the distribution of water temperature in the warm water pool, and these observations were performed in Wudu warm water pool located at Wodu-Dong in Chuncheon. The results summarized in this study are as follows; 1. The horizontal distribution charts of water temperature at each depth of points were shown as Fig. 3, Fig. 4, and Fig. 5, respectively. In consequence of the observation, the condition of warm water was stagnant in the coner of warm water pool. As the result, it was found out that stagnant condition was the heaviest at water surface (depth; 0.05m), more heavier at middle depth (depth; 0.55m) and some heavy at bottom of the pool (depth; 1.10m). 2. The vertical water temperature change was shown as Fig. 6, and the mean water temperature of water surface (depth;0.05m) was higher about $2.2{\sim}3.3^{\circ}C$ than bottom water temperature. 3. Therefore, it was required to device such structures as form of broad cannels or overflow diversion weirs to mingle with top and bottom water.

  • PDF

Characteristics of Water Spray for Extinguishment of Gasoline Pool Fire (가솔린 화재의 소화를 위한 수분무의 특성)

  • Jang, Yong-Jae;Kim, Myeong-Bae
    • 연구논문집
    • /
    • s.25
    • /
    • pp.129-135
    • /
    • 1995
  • This study discribes characteristics of water spray for extinguishment of gasoline pool fire. Experiments are carried out for the gasoline pool fire in a small tank with a diameter of 150mm and a height of 8mm. Droplet size, spray pressure, amount of water which reaches the flame base and velocity of water spray are measured to find extinguishment conditions and air entrainment due to the water spray is visualized. Critical conditions of water spray for extinguishment of gasoline pool fire is quantitatively shown.

  • PDF

Design of the Heat Exchanger in Pool Water Management System of a Research Reactor and Estimation of the Pool Water Temperature Using CFD (전산유체해석을 이용한 연구용원자로 수조수관리계통 열교환기 설계 및 수조수 온도 예측)

  • Jeong, Namgyun
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.45-51
    • /
    • 2016
  • The pool water management system, which is installed for purification of the coolant in the pools and the primary cooling system of a research reactor, removes the decay heat from the reactor core when the primary cooling system stops. It also removes the heat generated from the irradiated objects in the service pool and the spent fuels in the spent fuel storage pool to keep the temperature of the pools within a limited value. In this study, the heat exchanger of the pool water management system is designed by CFD method using a commercial code Flowmaster, and the temperature of the pools is estimated along the time to conclude the design and operation method of the pool water management system.

A Study of the Characteristics of Unsteady Laminar Jet Submerged into a Suppression Pool (응축 풀 내의 비정상 층류 제트의 유동 특성에 관한 연구)

  • Choi, Yong Moon;Kim, Chong Bo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.499-507
    • /
    • 1988
  • The pressure suppression pool of BWR(Boiling Water Reactor) is subjected to hydrodynamic impact in the event of a LOCA(Loss of Coolant Accident). The pressure increase in the reactor dry cell would force the existing water of a vent pipe into the suppression pool. When the water is ejected through the pipe opening into the suppression pool, an abrupt downward force is transmitted to the suppression pool floor. Consequently, many structures installed within the pool must be able to withstand these forces. In order to determine the optimum safe locations of the pool structures, numerical analysis have been carried out to investigate the hydrodynamic behavior of the water jet. In the present analysis, a two-dimensional numerical model is utilized to solve transient flow equations.

  • PDF

Fluid-structure interaction analysis of sloshing in an annular - sectored water pool subject to surge motion

  • Eswaran, M.;Goyal, P.;Reddy, G.R.;Singh, R.K.;Vaze, K.K.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-201
    • /
    • 2013
  • The main objective of this work is to investigate the sloshing behavior in a baffled and unbaffled three dimensional annular-sectored water pool (i.e., tank) which is located at dome region of the primary containment. Initially two case studies were performed for validation. In these case studies, the theoretical and experimental results were compared with numerical results and good agreement was found. After the validation of present numerical procedure, an annular-sectored water pool has been taken for numerical investigation. One sector is taken for analysis from the eight sectored water pool. The free surface is captured by Volume of Fluid (VOF) technique and the fluid portion is solved by finite volume method while the structure portions are solved by finite element approach. Baffled and un-baffled cases were compared to show the reduction in wave height under excitation. The complex mechanical interaction between the fluid and pool wall deformation is simulated using a partitioned strong fluid-structure coupling.

Extingushiment by the Colling Effect of the Fuel Surface with Pool Fires (Pool 화재에서의 표면 냉각에 의한 소화)

  • 한용식;김명배;신현동
    • Fire Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.15-23
    • /
    • 1997
  • A series of measurements and visualization to investigate the extingushiment of water sprays with pool fires is presented. Fire source is a small-scale pool burner with methanol, ethanol and gasoline. Measurements of temperature, O2, CO2, and CO concentrations along the plume centerline are carried out to observe pool structures without water sprays. Visualization by the Ar-ion laser sheet flow pattern of droplets of the sprays above the pool fires. It is observed than in the case of methanol and ethanol, water sprays continuously penetrate into the center of fuel surfaces. The gasoline pool fire allows intermittent penetration of water sprays because of pulsating characteristics of the gasoline flame. To evaluate the cooling effect of the fuel surface by the sprays, the temperature was measured at the fuel surface. As soon as the mists reach the fuel surface of methanol and ethanol, the temperatures of the fuel surface decrease rapidly below the boiling point, and then the fires are extinguished. Due to the application of mist upon the gasoline fire, though the fuel temperature decrease abruptly at the time of the injection, such a repid decrease do not continue till the extinction point.

  • PDF

Management of Swimming Pool (수영장 관리)

  • Kim Kyong-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.4 no.1 s.6
    • /
    • pp.37-42
    • /
    • 1989
  • Management of Swimming pool is focused on Swimming pool samitation in relation with chlorination of swimming water and potable water, disposal of waste and excrement within the boundry of swimming pool that may be summerised as follows: 1. Chlorination of Swimming Water Residual chlorine must be kept within the range of $0.4\~0.6 mg/l$ and in case of chloramine should be $0.7\~1.0mg/l$ while swimming pool is in operation 2. Chlorination of potable Water Residual chlorine must be kept within the rangs of $0.2\~04 mg/l$ at all time 3. Disposal of litters must be kept in the water tight waste bin with fitted lid, and waste should not be overflow -out of the bin. When waste in landfilled, the sufficient amount of cover material should be used daily. 4. Disposal of excrement Toilet must be water-flush type. However, The establishment of pit latrine is unavoidable the excrement must be covered with lime or dirt so that excrement should not be exposed to air.

  • PDF