• Title/Summary/Keyword: Pool Temperature

Search Result 353, Processing Time 0.038 seconds

Structural design and integrity evaluations for reactor vessel of PGSFR sodium-cooled fast reactor (PGSFR 소듐냉각고속로 원자로용기 설계 및 구조건전성 평가)

  • Koo, Gyeong Hoi;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.70-77
    • /
    • 2016
  • In this paper, the structural design and integrity evaluations for a reactor vessel of PGSFR sodium-cooled fast reactor(150MWe) are carried out in compliance with ASME BPV III, Division 5 Subsection HB. The reactor vessel is designed with a direct contact of primary sodium coolant to its inner surface and has a double vessel concept enclosing by containment vessel. To assure the structural integrity for 60 years design lifetime and elevated operating temperature of $545^{\circ}C$, which can invoke creep and creep-fatigue damage, the structural integrity evaluations are carried out in compliance with the ASME code rules. The design loads considered in this evaluations are primary loads and operation thermal cycling loads of normal heat-up and cool-down. From the evaluations, the PGSFR reactor vessel satisfies the ASME code limits but it was found that there is a little design margin of creep damage for inner surface at the region of cold pool free surface.

Quantitative Comparison of Diversity and Conformity in Nitrogen Recycling of Ruminants

  • Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.440-447
    • /
    • 2009
  • Domestic ruminant animals are reared in diverse production systems, ranging from extensive systems under semi-arid and tropical conditions with poor feed resources to intensive systems in temperate and cold areas with high quality feed. Nitrogen (N) recycling between the body and gut of ruminants plays a key role in the adaptation to such diverse nutritional conditions. Ammonia and microbial protein produced in the gut and urea synthesized in the liver are major players in N-recycling transactions. In this review, we focus on the physiological factors affecting urea production and recycling. Sheep and buffalo probably have higher abilities to reabsorb urea from the kidney compared with cattle. This affects the degree of urea-N recycling between the body and gut at both low and high N intakes. The synthesis and gut entry of urea also differs between cattle bred for either dairy or beef production. Lactating dairy cows show a higher gut entry of urea compared with growing cattle. The synthesis and recycling of urea dramatically increases after weaning, so that the functional development of the rumen exerts an essential role in N transactions. Furthermore, high ambient temperature increases urea production but reduces urea gut entry. An increase in total urea flux, caused by the return to the ornithine cycle from the gut entry, is considered to serve as a labile N pool in the whole body to permit metabolic plasticity under a variety of physiological, environmental and nutritional conditions.

Offsite Consequence Analysis for Accidental Release Scenarios of Toxic Substances in the Yochon Area (여천지역 누출사고 시나리오에 따른 인근 지역 피해 분석)

  • 김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.151-158
    • /
    • 1999
  • Offsite consequences resulting form worst-case scenarios involving release of toxic substances in the Yochon area were estimated using the ALOHA(Areal Locations of Hazardous Atmospheres) model. Eight toxic substances, including NH3, were considered; five were toxic gases and three were toxic liquids at ambient temperature. For toxic gases, the entire quantity was assumed to be released at a constant rate during a 10-minute period. For toxic liquids, the entire quantity stored in the tank was assumed to be spilled and spread and spread instantaneously to form a pool with a depth of 1cm, and then evaporated over some period of time. Except for phosgene and toluene 2,4-diisocyanate, for which concentration levels corresponding to human health effects are very low, average distances of the area at risk of adverse health effects for a 1- tom release were predicted to be $2.3{\pm}1.1 km$ for the worst-case meteorological conditions and $0.93{\pm}0.69km$ under typical meteorological conditions of the Yochon are. Because a large number of people were predicted to be affected in the current analysis, refined analyses considering both realistic accident scenarios and topographic effects were warranted.

  • PDF

A CFD ANALYSIS FOR THERMAL MIXING IN A SUBCOOLED WATER UNDER TRANSIENT STEAM DISCHARGE CONDITIONS (과도상태 증기제트 방출시 과냉각수조 내의 열혼합 해석)

  • Kang H.S.;Kim Y.S.;Chun H.G.;Song C.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.8-18
    • /
    • 2006
  • A CFD benchmark calculation for a steam blowdown test was performed for 30 seconds to develop the methodology of numerical analysis for the thermal mixing between steam and subcooled water. In the CFD analysis, the grid model simulating the sparger and the IRWST pool were developed by the axisymmetric condition and then the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. Thermal mixing phenomenon in the subcooled water tank was treated as an incompressible flow, a free surface flow between the air and the water, a turbulent flow, and a buoyancy flow. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. The commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behavior reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted.

Study of Air Clearing during Severe Transient of Nuclear Reactor Coolant System (원자로 사고 또는 과도상태시 공기방출현상에 대한 연구)

  • Bae Yoon Yeong;Kim Hwan Yeol;Song Chul-Hwa;Kim Hee Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.835-838
    • /
    • 2002
  • An experiment has been performed using a facility, which simulates the safety depressurization system (SDS) and in-containment refueling water storage tank (IRWST) of APR1400, an advanced PWR being developed in Korea, to investigate the dynamic load resulting from the blowdown of steam from a steam generator through a sparser. The influence of the key parameters, such as air mass, steam pressure, submergence, valve opening time, and pool temperature, on frequency and peak toads was investigated. The blowdown phenomenon was analyzed to find out the real cause of the initiation of bubble oscillation and discrepancy in frequencies between the experiment and calculation by conventional equation for bubble oscillation. The cause of significant damping was discussed and is presumed to be the highly tortuous flow path around bubble. The Rayleigh-Plesset equation, which is modified by introducing method of image, reasonably reproduces the bubble oscillation in a confined tank. Right after the completion of air discharge the steam discharge immediately follows and it condenses abruptly to provide low-pressure pocket. It may contribute to the negative maximum being greater than positive maximum. The subsequently discharging steam does not play as at the driving force anymore.

  • PDF

MULTI-SCALE MODELS AND SIMULATIONS OF NUCLEAR FUELS

  • Stan, Marius
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.39-52
    • /
    • 2009
  • Theory-based models and high performance simulations are briefly reviewed starting with atomistic methods, such as Electronic Structure calculations, Molecular Dynamics, and Monte Carlo, continuing with meso-scale methods, such as Dislocation Dynamics and Phase Field, and ending with continuum methods that include Finite Element and Finite Volume. Special attention is paid to relating thermo-mechanical and chemical properties of the fuel to reactor parameters. By inserting atomistic models of point defects into continuum thermo-chemical calculations, a model of oxygen diffusivity in $UO_{2+x}$ is developed and used to predict point defect concentrations, oxygen diffusivity, and fuel stoichiometry at various temperatures and oxygen pressures. The simulations of coupled heat transfer and species diffusion demonstrate that including the dependence of thermal conductivity and density on composition can lead to changes in the calculated centerline temperature and thermal expansion displacements that exceed 5%. A review of advanced nuclear fuel performance codes reveals that the many codes are too dedicated to specific fuel forms and make excessive use of empirical correlations in describing properties of materials. The paper ends with a review of international collaborations and a list of lessons learned that includes the importance of education in creating a large pool of experts to cover all necessary theoretical, experimental, and computational tasks.

Preparation of $Ba_{1-x}Sr_xTiO_3$thin films by metal by metal-organic chemical vapor deposition and electrical properties. (Preparation of $Ba_{1-x}Sr_xTiO_3$ thin films by metal-organic chemical vapor deposition and electrical properties)

  • Yoon, Jong-Guk;Yoon, Soon-Gil;Lee, Won-Jae;Kim, Ho-Gi
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.62-66
    • /
    • 1996
  • $(Ba_{1-x}Sr_xTiO_3$ (BST) thin films have been grown on Pt-coated MgO by metal -organic chemical vapor deposition. X-ray diffraction results showed that BST films were grown on a Pt/MgO substrate with (100) preferred orientation perpendicular to the surface. The lineawr relationship of P-E curve obtained form hysteresis loop measurement indicated that the BST films had a Curie transitions below room temperature . Films deposited at $900^{\circ}C$ exhibited a smooth and dense microstructure, a dielectric constant of 202, and a dissipation facotr of 0.02 at 100kHz. The leakage current density of the BST films is about $2\times10^{-10} \;A/\textrm{cm}^2$$ at an applied electric field of 0.2 MV/cm. The electrical behavior on the current-voltage characteristics is well explained by the bulk-limited Pool-Frenkel emission.

  • PDF

A Study on Welding Distortion of Channel I Butt SA Weld using FE Analysis (유한요소해석을 이용한 Channel I butt SA 용접부 변형 해석에 관한 연구)

  • Shin, Dae-Hee;Shin, Sang-Beam;Lee, Joo-Sung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.189-192
    • /
    • 2006
  • The purpose of this study is to evaluate the welding distortion at the channel I butt SA weldment. In order to do it, the heat input model for the weldment was defined as combined heat source with the surface heat flux of gaussian mode and volume heat source uniformly distributed within weld groove on the basis of comparing the shapes of molten pool and temperature distribution obtained by FEA and experiment. The arc efficiency of SA welding for 2 dimensional FE analysis was determined as 0.85. The results of welding distortions at the weldment obtained by FEA and heat input conditions proposed have a good agreement with those obtained by experiment. Based on the results, it was suggested that the proper heat input model should be required to evaluate the welding distortion for weldment.

  • PDF

A Study on Characteristics of Fire Temperature and Concentration of Toxic Gases while the Door Opening or Closed on Multi-layered Construction (복층건물의 출입문 개방여부에 따른 화재온도분포 및 독성가스 농도 변화특성에 관한 연구)

  • Lee, Jungyun;Kim, Jeonghun;Kim, Eungsik;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.72-77
    • /
    • 2017
  • In S. Korea, recently, building fire accidents of residential accommodations or recreational facilities have taken place more frequently than before. Among various building constructions, Multi-layered structure, such as office-residential complex, are mostly made in S. korea. $O_2$, $CO_2$, CO, $NO_x$, $SO_x$, and HCl, these gases has toxic hazard and harmful for human body. And it is predicted that different concentration of released gases from diesel pool fire with upper and lower layer. Therefore, this study reports the fire characteristics of Multi-layered structure by analyzing the fire behavior and concentration of combustion gases of a experimental compartment via real scale fire experiment, in order to predict risks and secure safety for similar fire accidents.

Experimental Study on the Designed Ventilation Effect on the Smoke Movement at Rescue Station fire in Railway Tunnel (터널 내 화재발생시 구난역 내의 연기 거동에 미치는 설계된 환기 영향에 대한 실험적 연구)

  • Kim, Dong-Woon;Lee, Seong-Hyeok;Ryou, Hong-Sun;Yoon, Sung-Wook
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.163-167
    • /
    • 2008
  • In this study, the 1/35 reduced-scale model experiment were conducted to investigate designed ventilation effect on the smoke movement at rescue station fire in railway tunnel. A model tunnel with 2 mm thick, 10 m long, 0.19 m high and 0.26 m was made by using Froude number scaling law. The cross-passages installing escape door at the center were connected between incident tunnel and rescue tunnel. The n-heptane pool fires with heat release rate 698.97W were used as fire source. The fire source was located at the center and portal of incident tunnel as worst case. A operating ventilation system extracted smoke amount of 0.015 cms(cubic meters per second). The smoke temperature and CO gas concentration in cross-passage were measured to verify designed ventilation system. The result showed that, at center fire case without ventilation, smoke did not propagate to rescues station. In portal fire case, smoke spreaded to rescues station without ventilation. But smoke did not propagated to rescues station with designed ventilation.

  • PDF