Browse > Article
http://dx.doi.org/10.5516/NET.2009.41.1.039

MULTI-SCALE MODELS AND SIMULATIONS OF NUCLEAR FUELS  

Stan, Marius (Los Alamos National Laboratory)
Publication Information
Nuclear Engineering and Technology / v.41, no.1, 2009 , pp. 39-52 More about this Journal
Abstract
Theory-based models and high performance simulations are briefly reviewed starting with atomistic methods, such as Electronic Structure calculations, Molecular Dynamics, and Monte Carlo, continuing with meso-scale methods, such as Dislocation Dynamics and Phase Field, and ending with continuum methods that include Finite Element and Finite Volume. Special attention is paid to relating thermo-mechanical and chemical properties of the fuel to reactor parameters. By inserting atomistic models of point defects into continuum thermo-chemical calculations, a model of oxygen diffusivity in $UO_{2+x}$ is developed and used to predict point defect concentrations, oxygen diffusivity, and fuel stoichiometry at various temperatures and oxygen pressures. The simulations of coupled heat transfer and species diffusion demonstrate that including the dependence of thermal conductivity and density on composition can lead to changes in the calculated centerline temperature and thermal expansion displacements that exceed 5%. A review of advanced nuclear fuel performance codes reveals that the many codes are too dedicated to specific fuel forms and make excessive use of empirical correlations in describing properties of materials. The paper ends with a review of international collaborations and a list of lessons learned that includes the importance of education in creating a large pool of experts to cover all necessary theoretical, experimental, and computational tasks.
Keywords
Nuclear Fuels; Models; Simulations; Fuel Performance; International Collaborations;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 V.L. Ginzburg and L.D. Landau, “On the theory of superconductivity”, Zh. Eksp. Teor. Fiz. 20, 1064 (1950)
2 M. I. Baskes and M. Stan, “An Atomistic Study of Solid- Liquid Interfaces and Phase Equilibrium in Binary Systems”, Metall. Mater. Trans. A, 34, 435 (2003)   DOI   ScienceOn
3 M. Stan and B. Reardon, “A Bayesian Approach to Evaluating the Uncertainty of Thermodynamic Data and Phase Diagrams”, CALPHAD, 27, 319 (2003)   DOI   ScienceOn
4 M. F. Lyons, B. Weidenba, R.F. Boyle, and T. J. Pashos, “Post-Irradiation Examination of High-Burnup Molten UO2 Fuel Rods”, Trans. Amer. Nucl. Soc., 8, 42 (1965)
5 D. R. Olander, “Fundamental Aspects of Nuclear Reactor Fuel Elements”, TID-26711-P1, Technical Information Service, U.S. Department of Commerce, Springfield, Virginia (1976)
6 G. Busker, A. Chroneos, and R. W. Grimes, “Solution Mechanisms for Dopant Oxides in Yttria”, J. Am. Ceram. Soc., 82, 1553 (1999)   DOI
7 F. P. Incopera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc, New York (1996)
8 N. Metropolis and S. Ulam, “The Monte Carlo Method”, J. Amer. Statistical Assoc., 44, 335 (1949)   DOI   ScienceOn
9 J. Lepinoux and L. P. Kubin, “The Dynamic Organization of Dislocation Structures: A Simulation”, Scripta Metall. 21, 833 (1987)   DOI   ScienceOn
10 J. P. Hirth, M. Rhee, and H. M. Zbib, “On Dislocation Reactions and Hardening Mechanisms in 3D Dislocation Dynamics”, J. Computer-Aided Materials Design 3, 164 (1996)   DOI   ScienceOn
11 R. B. Bird, Transport Phenomena, John Wiley & Sons, Inc, New York (2002)
12 R. B. Phillips, Crystals, Defects, and Microstructures, Cambridge University Press, Cambridge (2001)
13 M. Stan, J. C. Ramirez, P. Cristea, S. Y. Hu, C. Deo, B. P. Uberuaga, S. Srivilliputhur, S. P. Rudin, and J. M. Wills., “Models and simulations of nuclear fuel materials properties”, J. Alloys Comp., 444–445, 415 (2007)   DOI   ScienceOn
14 J. Belle (Ed), “Uranium Oxide: Properties and Nuclear Applications”, Naval Reactors, Division of Reactor Development Report, USAEC, (1961)
15 D.G. Kolman, Y.S. Park, M. Stan, R.J. Hanrahan Jr., D.P. Butt, "An Assessment of the Validity of Cerium Oxide as a Surrogate for Plutonium Oxide Gallium Removal Studies", LA-UR-99-0491, Los Alamos National Laboratory (1999)
16 P. Cristea, M. Stan, and J. C. Ramirez, 'Point Defects and Oxygen Diffusion in Fluorite Type Oxides', J. Optoelectr. Adv. Mater, 9, 1750 (2007)
17 J. Janek and H. Timm, “Thermal Diffusion and Soret Effect in (U,Me)O2+x: The Heat of Transport of Oxygen”, J. Nucl. Mater., 255, 116 (1998)   DOI   ScienceOn
18 FRAPCON simulation code, http://www.pnl.gov/frapcon3/
19 http://mmsnf-6.nxo.jp/
20 http://public.lanl.gov/mastan/MMSNF/
21 http:/www.nea.fr/
22 http:/www.oecd.org/
23 M. S. Daw and M. I. Baskes, “Embedded-Atom-Method Functions for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys”, Phys. Rev. B 29, 6443 (1984)   DOI
24 A. F. Voter, F. Montalenti, and T. C. Germann, “Extending the Time Scale in Atomistic Simulations of Materials”, Ann. Rev. Mater. Res., 32, 321 (2002).   DOI   ScienceOn
25 N. Sounders and A. P. Miodownik, CALPHAD, Elsevier Science Limited, New York (1998)
26 A. P. Sutton, Electronic Structure of Materials, Oxford University Press, Oxford (1993)
27 United States Nuclear Regulatory Commission, Emergency Preparedness, http://www.nrc.gov/about-nrc/emergpreparedness/ images/fuel-pellet- assembly.jpg
28 K. Kunc and R. M. Martin, “Ab Initio Force Constants of GaAs: A New Approach to Calculation of Phonons and Dielectric Properties”, Phys. Rev. Lett., 48, 406 (1982)   DOI
29 J.W. Cahn. “On Spinodal Decomposition”, Acta Metall., 9, 795 (1961)   DOI   ScienceOn
30 T. B. Lindemer and T. M. Besmann, “Chemical Thermodynamic Representation of UO2${\pm}$x”, J. Nucl. Mater., 130, 473 (1985)   DOI   ScienceOn
31 W. Frank and C. Elsasser and M. Fahnle, “Ab initio Force- Constant Method for Phonon Dispersions in Alkali Metals”, Phys. Rev. Lett., 74, 1791 (1995)   DOI   ScienceOn
32 G. D. Billing and K. V. Mikkelsen, “Introduction to Molecular Dynamics and Chemical Kinetics”, John Wiley & Sons, Inc, New York, 1996
33 J. N. Reddy and D. K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, LLC, Boca Raton (2001)
34 J. Singleton, Band Theory and Electronic Properties of Solids, Oxford University Press, Oxford (2001)
35 S. S. Hecker and M. Stan, “Properties of Plutonium and its Alloys for Use as Fast Reactor Fuels” J. Nucl. Mater. 383, 112 (2008)   DOI   ScienceOn
36 J. C. Ramirez, M. Stan, and P. Cristea, “Simulations of Heat and Oxygen Diffusion in UO2 Nuclear Fuel Rods”, J. Nucl. Mater., 359, 174 (2006)   DOI   ScienceOn
37 D. Frenkel and B. Smit, Understanding Molecular Dynamics, Academic Press, San Diego (2002)
38 A Karma. “Phase-Field Formulation for Quantitative Modeling of Alloy Solidification”, Phys. Rev. Lett., 87, 115701 (2001)   DOI   PUBMED   ScienceOn
39 V. Bulatov, M. Tang, M. and H. M. Zbib, “Crystal plasticity from dislocation dynamics”, Materials Research Society Bulletin 26, 191 (2001)   DOI
40 L. Kaufman and H. Bernstein, Computer Calculations of Phase Diagrams, Academic Press, New York (1970)
41 C. Korte, J. Janek, and H. Timm, “Transport Processes in Temperature Gradients: Thermal Diffusion and Soret Effect in Crystalline Solids”, Solid State Ionics, 101/103, 465 (1997)   DOI   ScienceOn
42 S.Y. Hu, M. I. Baskes, M. Stan and C. Tome, “Phase-field Modeling of Micro-void Evolution under Elastic-plastic Deformation”, Appl. Phys. Let., 90, 81921 (2007)   DOI   ScienceOn
43 W. M. Stacey, Nuclear Reactor Physics, John Wiley & Sons, Inc, New York (2001)
44 S. I. Sandler, Chemical Engineering and Thermodynamics, John Wiley & Sons, Inc, New York (1999)
45 J. K. Fink, “Thermophysical Properties of Uranium Dioxide”, J. Nucl. Mater., 279, 1 (2000)   DOI   ScienceOn
46 M. Stan and P. Cristea, “Defects and Oxygen Diffusion in PuO2-x”, J. Nucl. Mater. 344, 213 (2005)   DOI   ScienceOn
47 http://workshop_mmsnf5.irsn.org/
48 M. I. Baskes, “Modified Embedded-Atom Potentials for Cubic Materials and Impurities“, Phys. Rev. B 46, 2727 (1992)   DOI   ScienceOn
49 M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University Press, New York (1998)
50 N.H. March, Electron Density Theory of Atoms and Molecules, Academic Press, New York (1992)
51 M. Stan, “Materials Models and Simulations in Support of Nuclear Fuels Development”, LA-UR-05-5652, Los Alamos National Laboratory (2005)
52 W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev. A, 140, 1133 (1965)   DOI
53 W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte Carlo Simulations of Solids”, Rev. Mod. Phys. 73, 33 (2005)   DOI   ScienceOn
54 K. C. Kim and D. R. Olander, “Oxygen Diffusion in UO2- x “, J. Nucl. Mater., 102 192 (1981)   DOI   ScienceOn
55 A. F. Voter, “Introduction to the Kinetic Monte Carlo Method”, in Radiation Effects in Solids, K. E. Sickafus and E. A. Kotomin (Editors), Springer, NATO Publishing Unit, Dordrecht, The Netherlands (2005)
56 E. Van der Giessen and A. Needleman, A., “Discrete Dislocation Plasticity: A Simple Planar Model”, Mater. Sci. Eng. 3, 689 (1995)   DOI   ScienceOn
57 http://itu.jrc.ec.europa.eu/index.php?id=36&type=&iEntryUID=164&iEntryPID=6
58 http://www.lanl.gov/orgs/mst/mmsnf/
59 M. Abramowski, “Atomistic Simulations of the Uranium/ Oxygen System”, PhD Thesis, Imperial College (2001)
60 http://www.lanl.gov/mst/nuclearfuels/
61 M. Stan, T.J. Armstrong, D.P. Butt, T.C. Wallace Sr., Y.S. Park, C.L. Haertling, T. Hartmann, R.J.Hanrahan Jr., “Stability of the Perovskite Compounds in the Ce-Ga-O and Pu-Ga-O Systems”, J. Am. Ceram. Soc., 85, 2811 (2002)   DOI   ScienceOn
62 A. R. Allnatt and A. B. Liliard, Atomic Transport in Solids, University Press, Cambridge, New York, 1993
63 R. M. Martin, Electronic Structure, Cambridge Univ. Press, New York (2004)
64 H. Y. Wang and R. LeSar, “O(N) Algorithm for Dislocation Dynamics”, Philosophical Magazine A, 71, 149 (1995)   DOI   ScienceOn
65 M. E. Glicksman, Diffusion in Solids, John Wiley & Sons, Inc, New York (2000)
66 M. I. Baskes, K. Muralidharan, M. Stan, S. M. Valone, and F. J. Cherne, “Using the Modified Embedded-Atom Method to Calculate the Properties of Pu-Ga Alloys”, JOM, 55, 41 (2003)   DOI