• 제목/요약/키워드: Pool Boiling Correlation

검색결과 26건 처리시간 0.2초

VARIATION OF LOCAL POOL BOILING HEAT TRANSFER COEFFICIENT ON 3-DEGREE INCLINED TUBE SURFACE

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.911-920
    • /
    • 2013
  • Experimental studies on both subcooled and saturated pool boiling of water were performed to obtain local heat transfer coefficients on a $3^{\circ}$ inclined tube of 50.8 mm diameter at atmospheric pressure. The local values were determined at every $45^{\circ}$ from the very bottom to the uppermost of the tube periphery. The maximum and minimum local coefficients were observed at the azimuthal angles of $0^{\circ}$ and $180^{\circ}$, respectively, in saturated water. The locations of the maxima and the minima were dependent on the inclination angle of the tube as well as the degree of subcooling. The major heat transfer mechanisms were considered to be liquid agitation generated by the sliding bubbles and the creation of big size bubbles through bubble coalescence. As a way of quantifying the heat transfer coefficients, an empirical correlation was suggested.

천공판의 풀비등 열전달 촉진에 대한 연구 (Pool boiling heat transfer enhancement by perforated plates)

  • 김내현
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1406-1415
    • /
    • 1996
  • Several recent studies have revealed that boiling heat transfer may be considerably enhanced in a narrow restricted region. In his study, the narrow restricted region was formed by attaching a perforated plate on top of a boiling surface. Through systematic experiments, effects of the hole size, hole pattern, gap width between the perforated plate and the boiling surface were investigated using water or R-113. Results show that perforated plates considerably enhance the boiling of water or R-113. For water, especially, they have outperformed commercial enhanced tubes, which confirms that boiling enhancement mechanism of the perforated plate (thin film evaporation beneath the elongated bubble) is very effective to the boiling of high surface tension liquids such as water. Optimum configuration was found - 3.0 mm hole diameter, 15 mm * 15 mm hole pattern, 0.3 ~ 0.5 mm gap width for water, and 2.0 mm hole diameter, 3.5 mm * 3.5 mm hole pattern, O.5 mm gap width for R-113. A correlation which correlates most of the data within .+-. 30% was also developed.

나선형 튜브 열교환 방식의 포화 상태 액체질소의 비등열전달 특성에 대한 실험적 연구 (Experimental Research of Characteristic of Pool Boiling Heat Transfer of Saturated Liquid Nitrogen with Helical Coil Type Heat Exchanger)

  • 서만수;이지성;김정한;강선일
    • 한국추진공학회지
    • /
    • 제24권3호
    • /
    • pp.59-70
    • /
    • 2020
  • 본 논문에서는 기존 적층형 배관의 총 열전달 계수 경험식을 활용할 때 발생하는 한계점을 해결하고자, 외부 총 열전달 계수의 강제 대류 열전달 계수 항을 독립적으로 도출하는 간소화된 모델링을 제안하고, 이를 극저온 환경의 실험 결과로 확인하였다. 액체 산소 냉각 나선형 열교환기가 액체 질소와 열교환하는 실험 장치를 구성하고 열교환기의 열전달량을 계측하여, 외부 총 열전달 계수를 도출하였다. 측정된 외부 총 열전달 계수가 모델링으로 예측 곡선과 일치함을 확인하였다.

Nucleate Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a

  • Park Ki-Jung;Jung Dong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.399-408
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficient (HTCs) were measured with one nonazeotropic mixture of propane/isobutane and two azeotropic mixtures of HFC134a/isobutane and propane/HFC 134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube of 19.0mm outside diameter with heat fluxes of $10\;kW/m^2\;to\;80kW/m^2$ with an interval of $10\;kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of propane/isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/isobutane and propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with larger gliding temperature difference. Stephan and Korner's and lung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/isobutane and propane/HFC134a.

수직면에서의 비등 열전달에 대한 실험적 연구 (An Experimental Investigation of the Boiling Heat Transfer on the Vertical Square Surface)

  • 김재광;송진호;김신;김상백;김희동
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1237-1244
    • /
    • 2001
  • An experimental study was carried out to identify the various regimes of natural convective pool boiling and to determine the boiling heat transfer curve and Critical Heat Flux(CHF) on a vertical square surface having a 70mm width and a 70mm height. The heater made of copper block with embedded cartridge heaters is submerged in a water tank at atmospheric pressure. As the heat flux increases from 100kW/㎡ to 1.2MW/㎡, the heat transfer regime migrates from the nucleate boiling to the film boiling. The boiling heat transfer data are fitted by Rohsenow type correlation. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux, is visualized using a high speed digital imaging system.

물의 포화풀비등에서 다발효과를 평가하기 위한 실험식 개발 (Development of an Empirical Correlation to Evaluate the Bundle Effect in Saturated Pool Boiling of Water)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제41권1호
    • /
    • pp.1-8
    • /
    • 2017
  • 대기압 하에서 포화 상태를 유지하는 물의 내부에 잠긴 탠덤 튜브에 적용하기 위한 실험적 상관식을 새롭게 개발하였다. 상관식은 다발효과를 계산하기 위한 것으로 실험에서 측정한 값과 최소자승법을 사용하여 결정하였다. 상관식의 적절함을 평가하기 위해 통계분석을 수행하였다. 상관식은 실험값을 ${\pm}8%$ 범위 내에서 잘 예측함을 확인하였다. 상관식의 적용 범위는 피치=28.5~114mm, 방위각=$0^{\circ}{\sim}90^{\circ}$, 경사각=$0^{\circ}{\sim}90^{\circ}$, 상부 및 하부 튜브 열유속=$0{\sim}120kW/m^2$이다.

수평관에서 프로판, 이소부탄, BFC134a를 포함한 혼합냉매의 풀비등 열전달계수 (Pool Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a on a Plain Tube)

  • 박기정;백인철;정동수
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.955-963
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficients (HTCs) were measured with one nonazeotropic mixture of Propane/Isobutane and two azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube with heat fluxes of $10kW/m^2\;to\;80kW/m^2$ with an interval of $10kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of Propane/Isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with a larger gliding temperature difference. Stephan and $K{\ddot{o}}rner's$ and Jung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/Isobutane and Propane/HFC134a.

Theoretical and Experimental Studies on Boiling Heat Transfer for the Thermosyphons with Various Helical Grooves

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1662-1669
    • /
    • 2005
  • Boiling heat transfer characteristics of a two-phase closed thermosyphons with various helical grooves are studied experimentally and a mathematical correlation is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal helical grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tubes is also tested for comparison. Water, methanol and ethanol are used as working fluid. The effects of the number of grooves, various working fluids, operating temperature and heat flux are investigated experimentally. From these experimental results, a mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphons. And also the effects of the number of grooves, the various working fluids, the operating temperature and the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical correlation is obtained. The experimental results show that the number of grooves, the amount of the working fluid and the various working fluids are very important factors for the operation of thermosyphons. Also, the thermosyphons with internal helical grooves can be used to achieve some inexpensive and compact heat exchangers in low temperature.

전열면의 특수표면화에 의한 열기기의 효율향상에 관하여 (Improved Heat Transfer Coefficient in Heat Exchanger by the Use of Specialized Heating Surface)

  • 임장순
    • 대한설비공학회지:설비저널
    • /
    • 제8권3호
    • /
    • pp.131-150
    • /
    • 1979
  • Recently only a few correlations between various factors due to the different grades of surface roughness for the nucleate pool boiling have been proposed. The main purpose of this work is to test the validity of these types of correlations between related factors to nucleate pool boiling phenomena. The boiling experiments using distilled water were carried out at the heat flux ranging from $7.4\times10^4\;to\;2.4\times10^5kcal/m^2h$ on the sintered porous metal surface with the cavity diameter of 10, n, 40, 70, $100{\mu}$, respectively, at the atmospheric pressure, To determine the bubble sizes, number of nucleation sites, delay and growth time, frequency of bubble emission and rising velocities of bubbles, the high speed motion picture technique was employed. In the correlation $f{\propto}D_b^n$, where f denotes frequency of bubble emission and $D_b$ departure diameter, n, the power factor of $D_b$, have been found to be from -2 to -10/3. The correlation C in the correlation between heat flux q and density of nucleation sites $\frac{N}{A}$, $q=C(\frac{N}{A})^n$, was appeared to be more crucial than the power factor n. The correlation of the heat flux q to the temperature difference ${\Delta}T$ and the density of nucleation sites$\frac{N}{A}$, was proposed to be $$q-460{\Delta}T^{\frac{5}{4}}=K{\Delta}T{\frac{5}{3}}(\frac{N}{A})^{\frac{2}{3}}$$. The values of heat transfer coefficient obtained in this experiments for the porous sintered metal surface appeared to be very high in comparison with the formerly obtained results for the other surfaces.

  • PDF

열교환기 형상이 축소한 IRWST 내부의 풀핵비등에 미치는 복합적인 영향에 대한 실험적 연구 (Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST)

  • Kang, Myeong-Gie;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.1-16
    • /
    • 1996
  • 축소한 격납용기 내부 핵연료재장전수저장탱크의 안쪽에 설치한 열교환기 튜브의 주요 매개변수들이 풀핵비등 열전달에 미치는 복합적인 영향을 극명하기 위해 튜브 외경, 표면 거칠기, 그리고 튜브 설치 방향에 대한 다양한 조합들을 환용하여 열유속 q'quot;와 과열 온도 차이 $\Delta$T 간의 관계에 대한 총 1,966 개의 실험값을 취득하였다. 이 실험 결과들에 의하면, (1) 표면 거칠기 증가는 수평 및 수직 튜브 모두에 대해 열전달을 향상시키고, (2) 기포 생성에 따른 두가지 열전달 기구인 주변 액체 운동증가에 의한 열전달 향상과 기포층 및 기포 군집 형성에 의한 열전달 감소는 50㎾/$m^2$의 열유속을 경계로 낮은 열유속과 높은 열유속 영 역 에서 서로 다르게 관찰되는데, 이것은 튜브 설치 방향과 표면 거칠기의 크기와 관련이 있으며, (3) 튜브 외경 증가는 수평 및 수직 튜브 모두에 대해 열전달을 감소시키는데, 그 영향정도는 수평보다 수직구조에서 더 크다. 수평 및 수직 튜브들에 대해 열유속 q'quot;와 표면 거칠기 ($\varepsilon$) 및 튜브 외경 (D) 사이의 관계를 결정하는 두 가지 실험식을 개발하였다. 그리고, q'quot;만의 함수로된 풀핵비등 열전달계수( $h_{b}$ 에 대한 간단한 실험식도 부가적으로 개발하였다. 실험식도 부가적으로 개발하였다.'quot;만의 함수로된 풀핵비등 열전달계수($h_{b}$ 에 대한 간단한 실험식도 부가적으로 개발하였다.

  • PDF