• Title/Summary/Keyword: Polyurethane Spring

Search Result 10, Processing Time 0.029 seconds

Experimental and Analytical Study of the Dynamic Behavior of a Polyurethane Spring Restoring Disk Bearing (폴리우레탄 스프링 복원형 디스크 받침의 동적거동에 대한 실험 및 해석적 연구)

  • Park, Hyung-Ghee;Lee, You-In;Jung, Dae-Yu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.61-69
    • /
    • 2011
  • In this paper, the factors affecting the dynamic characteristics of a polyurethane spring restoring disk bearing are analysed to predict the dynamic behavior of the bearing. The prediction results and the test results are compared. The Young's modulus of the polyurethane spring, which varies according to strain of spring and the friction coefficient, of PTFE (PolyTetraFluoroEthylene), which varies according to the velocity and pressure of PTFE, are considered as the factors influencing the dynamic characteristics. W-PTFE virgin products are used and polyurethane springs are produced for the tests. The equation related to changing the friction coefficient and the modulus of elasticity are obtained through an inverse estimation of the test results. The estimation results, considering the factors affecting the dynamic characteristics, simulate the test results more appropriately than the estimation without the consideration of those factors.

Evaluation of Static Spring Constant and Accelerated Life Prediction for Compression Set of Polyurethane Resilient Pad in Rail Fastening System

  • Lee, Seung-Won;Park, Jun-Young;Park, Eun-Young;Ryu, Sung-Hwan;Bae, Seok-Hu;Kim, Nam-Il;Yun, Ju-Ho;Yoon, Jeong-Hwan
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.220-225
    • /
    • 2018
  • Resilient pads play a major role in reducing the impact of loads on a rail in a rail-fastening system, which is essentially used for a concrete track. Although a compression set test is commonly used to measure the durability of a resilient pad, the static spring constant is often observed to be different from the fatigue test. In this study, a modified compression set test method was proposed to monitor the variations in the compression set and static spring constant of a resilient pad with respect to temperature and time. In addition, the life of the resilient pad was predicted by performing an acceleration test based on the Arrhenius equation.

Damping Effect of Reinforced Polyurethane Foam under Various Temperatures

  • Lee, Tak-Kee;Kim, Myung-Hyun;Rim, Chae-Whan;Chun, Min-Sung;Suh, Yong-Suk
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.230-235
    • /
    • 2011
  • Reinforced polyurethane foam (RPUF) is one of the important materials of Mark III type insulation systems used in liquefied natural gas (LNG) cargo containment systems. However, RPUF is the most difficult material to use with regard to its safety assessment, because there is little public and reliable data on its mechanical properties, and even some public data show relatively large differences. In this study, to investigate the structural response of the system under compressive loads such as sloshing action, time-dependent characteristics of RPUF were examined. A series of compressive load tests of the insulation system including RPUF under various temperature conditions was carried out using specimens with rectangular section. As a result, the relationship between deformation of RPUF and time is linear and dependent on the loading rate, so the concept of strain rate could be applied to the analysis of the insulation system. Also, we found that the spring constant tends to converge to a value as the loading rate increases and that the convergence level is dependent on temperature.

A Study of the Development of Air Spring Mount with High Damping Characteristic (감쇠기능을 갖는 에어마운트 개발에 관한 연구)

  • Uhm, Young-Hwan;Maeng, Ju-Won;Kwon, Tae-Chul;Lee, Seong-Choon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.188-192
    • /
    • 2004
  • The purpose of this study is to develop an air spring mount that has high damping characteristic. The new type air spring mount has a polyurethane core in the center. By adding the core, the air spring mount shows excellent damping effect and good resistance to lateral force. This study includes both the analytical study and the experimental study of the new type air spring mount.

  • PDF

Cyclic compressive behavior of polyurethane rubber springs for smart dampers

  • Choi, Eunsoo;Jeon, Jong-Su;Seo, Junwon
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.739-757
    • /
    • 2017
  • The main goal of this study is to investigate the hysteretic behavior of polyurethane rubber springs in compression with and without precompression. The precompression is introduced to provide rigid force in the behavior, and thereby a precompressed rubber spring can be used for a restoring element. For the goal, this study prepares nine rubber springs for three suites which are all cylindrical in shape with a hole at the center. The rubber springs in each suite have different dimensions of diameter and length but have similar shape factors; thus, they are designed to have a similar compressive stiffness. Three rubber springs from the nine are tested with increasing compressive strain up to 30% strain to investigate the behavior of the rubber springs without precompression as well as the effect of the loading strain. The nine springs are compressed up to 30% strain with increasing precompressive strain from 0 to 20% at increments of 5%. The study analyzes the effective stiffness and damping ratio of the rubber springs with and without precompression, and the rigid force of the precompressed rubber springs is discussed. Finally, this study suggests a regression method to determine the minimum required precompression to eliminate residual strain after unloading.

Study for the Vertical Vibratioin Control Method of Railway Structure (철도구조물의 연직진동 제어기법에 관한 연구)

  • Choi, Eun-Soo;Lee, Joo-Tak;Yu, Seong-Mun;Lee, You-In
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1242-1247
    • /
    • 2011
  • This study investigates vertical vibration control method for railway structure by using vertical vibration control device. The device consists of high stiffness polyurethane spring and friction damper recognized by National Center for Earthquake Engineering Research of USA for durability. To confirm the capacity of vertical vibration control, at first, behavior equation is established by considering correlation among the components. Then, hysteresis curve is drawed from behavior equation. By considering both dynamic behaviors and material nonlinearities, more reasonable behavior of the device can be simulated. After that, the Validity of the vibration control trend is proved by FEM(Finite Element Method).

  • PDF

Estimation of Compressive Stiffness of Polyurethane Rubber Springs and Its Application (폴리우레탄 고무 스프링의 압축 강성도 추정 및 적용)

  • Choi, Eunsoo;Park, Seungjin;Woo, Daeseung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.229-236
    • /
    • 2017
  • The purpose of this study is to investigate the behavior and characteristics of rubber springs and calculate the compressive stiffness by performing dynamic compression tests of rubber springs. In order to carry out the dynamic compression test of rubber spring, total 9 rubber springs were tailored by calculating the shape factor of L80-D55, L90-D58, and L100-D60, and used for the experiments. Experiments were performed by controlling the compression according to the length of the rubber spring, and the compression was increased in the order of 5%, 10%, 15%, 20% and 25% of the strain. From the experimental results, the force-strain curves were obtained and it was confirmed that strength decrease and strength increase phenomenon occurred as the strain increased. In addition, it was confirmed that the decrease of stiffness and the increase of stiffness were clearly observed according to the size and diameter of the rubber spring, and the effective compression stiffness was estimated using the slope of the force-strain curve. By using the effective compressive stiffness, design values that can be used in actual design were presented.

Designing Elderly Women's Golfwear Slacks Patterns with Dynamic Anthropometry Using a 3D Body Scanner (3차원 바디 스캐너를 이용한 인체 치수 측정에 따른 노년 여성의 골프웨어 슬랙스 패턴 설계)

  • Ryu, Sin-A;Choi, Jong-Myoung;Park, Kil-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.4
    • /
    • pp.456-471
    • /
    • 2012
  • This study creates a method with more scientific patterns for use in designing golfwear slacks patterns that better reflect the unique characteristics of body types for elderly women aged 60 or older. This study investigates (when designing human-engineering golfwear slacks for elderly women) the body types of elderly women and design slacks patterns suitable for golf actions in order to design golfwear slacks that show excellence in function and aesthetics as well as for exercise and everyday wear conditions. The study indicated that "total crotch length" was the design element for most considerations when manufacturing golf slacks. A survey on the production of golf slacks for elderly women aged 60 or older showed that the 6 firms participating have not produced an exclusive product for women 60 years of age or older and have only manufactured an enlarged size up to 85. All 6 firms participating replied "No" two the question "Do you produce in consideration of the body types of women over 60 years of age?" Polyester-polyurethane composites were the most widely used (among golf slacks materials) as spring-autumn applications.

Modeling and Active Control of an Air-Cell Seat for Ride-Comfort Improvement (승차감 향상을 위한 에어셀시트의 모델링 및 능동제어)

  • Hong, Keum-Shik;Hwang, Su-Hwan;Hong, Kyung-Tae;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1672-1684
    • /
    • 2004
  • In this paper, an active vibration control with the use of an air-cell seat for passenger cars is investigated. The roles of the air-cell inserted between the polyurethane foam of the seat and seat cover are first to extend the seat's capability to adopt various shapes of human body and to improve the ride-comfort against road disturbances. The air-cell seat is modeled as a 1-d.o.f. spring-damper system. Because an exact modeling of the air-cell itself is alomost impossible, its dynamic characteristics are analyzed through experiments. A road-adaptive gain-scheduled sky-hook control for the air-cell seat system is proposed. The skyhook gains are scheduled in such a way that the acceleration level transmitted to human body on various road conditions is minimized. Simulations and experimental results are provided.

A Smart Damper Using Magnetic Friction And Precompressed Rubber Springs (자력 마찰과 기압축 고무 스프링을 이용한 스마트 댐퍼)

  • Choi, Eun Soo;Choi, Gyu Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.223-229
    • /
    • 2016
  • This study proposes a new technology for a smart damper with flag-shaped behavior using the combination of magnetic friction and rubber springs. The magnet provides friction and, thus, energy dissipation, and the rubber springs with precompression contribute to present self-centering capacity of the damper. To verify their performance, this study conducts dynamic tests of magnet frictional dampers and precompressed rubber springs. For the purpose, hexahedron Neodymium (NdFeB) magnets and polyurethane rubber cylinders are used. In the dynamic tests, loading frequency varies from 0.1 to 2.0 Hz. The magnets provide almost perfect rectangular behavior in force-deformation curve. The rubber springs are tested without or with precompression. The rubber springs show larger rigid force with increasing precompression. Lastly, this study discusses combination of rigid-elastic behavior and friction to generate 'flag-shaped' behavior for a smart damper and suggests how to combine the magnets and the rubber springs to obtain the flag-shaped behavior.