• 제목/요약/키워드: Polysulfone

검색결과 272건 처리시간 0.028초

D2EHPA를 Polysulfone으로 고정화하여 제조한 고체상 추출제에 의한 Cu(II)와 Pb(II)의 제거 (Removal of Cu(II) and Pb(II) by Solid-Phase Extractant Prepared by Immobilizing D2EHPA with Polysulfone)

  • 감상규;전진우;이민규
    • 한국환경과학회지
    • /
    • 제23권11호
    • /
    • pp.1843-1850
    • /
    • 2014
  • PS-D2EHPA beads were prepared by immobilizing di-2-ethylhexyl-phosphoric acid (D2EHPA) with polysulfone (PSf). The removal experiments of Cu(II) and Pb(II) by the prepared PS-D2EHPA beads were conducted batchwise. The removal efficiency of Cu(II) and Pb(II) by PS-D2EHPA beads was increased with increasing pH of solution. The removal rate of Cu(II) and Pb(II) was well described by the pseudo-second-order kinetic model. The maximum removal capacity of Cu(II) and Pb(II) obtained from Langmuir isotherm were 2.58 mg/g and 12.63 mg/g, respectively. External mass transfer coefficients for the removal of Cu(II) and Pb(II) by PS-D2EHPA beads were obtained $0.61{\times}10^{-2}{\sim}5.87{\times}10^{-2}/min$ and $1.55{\times}10^{-2}{\sim}8.53{\times}10^{-2}/min$, respectively and diffusion coefficients were obtained $1.32{\times}10^{-4}{\sim}3.98{\times}10^{-4}cm^2/min$ and $1.80{\times}10^{-4}{\sim}2.28{\times}10^{-4}cm^2/min$, respectively.

Polysulfone에 추출제 Di-(2-ethylhexyl)phosphoric acid (D2EHPA)와 tri-butyl-phosphate(TBP)를 고정화한 고체상 추출제의 제조와 Cu(II)의 제거 특성 (Preparation of Solid-Phase Extractant by Immobilizing Di-(2-ethylhexyl)phosphoric Acid (D2EHPA) and Tri-butyl-phosphate (TBP) in Polysulfone and Removal Characteristics of Cu(II))

  • 감상규;전진우;이민규
    • 한국환경과학회지
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2015
  • The solid-phase extractant PS-D2EHPA/TBP was prepared by immobilizing two extractants D2EHPA and TBP in polysulfone (PS). The prepared PS-D2EHPA/TBP was characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal of Cu(II) from aqueous solution was investigated in batch system. The experiment data were obeyed the pseudo-second-order kinetic model. Equilibrium data were well fitted by Langmuir model and the removal capacity of Cu(II) by solid extractant PS-D2EHPA/TBP obtained from Langmuir model was 3.11 mg/g at 288 K. The removal capacity of Cu(II) was increased according to increasing pH from 2 to 6, but the removal capacity was decreased below pH 3 remarkably.

Polysulfone에 Di-(2-ethylhexyl)phosphoric acid(D2EHPA)와 tri-butyl-phosphate(TBP)를 고정화하여 제조한 고체상 추출제에 의한 Sr(II)의 제거특성 (Removal Characteristics of Sr(II) by Solid-Phase Extractant Prepared by Immobilizing Di-(2-ethylhexyl)phosphoric acid (D2EHPA) and Tri-butyl-phosphate (TBP) in Polysulfone)

  • 감상규;전진우;이민규
    • 한국환경과학회지
    • /
    • 제24권3호
    • /
    • pp.267-274
    • /
    • 2015
  • The feasibility of PS-D2EHPA/TBP beads prepared by immobilizing two extractants D2EHPA and TBP in polysulfone to remove Sr(II) from aqueous solution was investigated in batch system. Batch experiments were carried out to study equilibrium isotherms, kinetics, and thermodynamics. Equilibrium data were fitted using Langmuir, Freundlich, Redlich-Peterson, and Dubinin-Radushkevich equation models at temperatures of 298 K, 313 K, and 328 K. The removal capacity of Sr(II) by PS-D2EHPA/TBP beads obtained from Langmuir model was 2.41 mg/g at 298 K. The experimental data were well represented by pseudo-second-order model. The removal process of Sr(II) by PS-D2EHPA/TBP beads prepared in this study was found to be feasible, endothermic, and spontaneous.

Polysulfone으로 carbon nanotubes (CNT)와 di-(2-ethylhexyl)-phosphoric acid (D2EHPA)를 고정화한 PSf/D2EHPA/CNT 비드에 의한 Cu(II)의 제거특성 (Removal Characteristics of Cu(II) by PSf/D2EHPA/CNT Beads Prepared by Immobilization of Carbon Nanotubes (CNT) and Di-(2-ethylhexyl)-phosphoric acid (D2EHPA) on Polysulfone (PSf))

  • 이창한;이민규
    • 한국환경과학회지
    • /
    • 제25권11호
    • /
    • pp.1485-1491
    • /
    • 2016
  • PSf/D2EHPA/CNT beads were prepared by immobilizing di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and carbon nanotubes (CNT) on polysulfone (PSf) and used to remove Cu(II) from aqueous solutions. Optimum pH was in the range of 4 to 6. The removal kinetic of Cu(II) by the prepared PSf/D2EHPA/CNT beads was mainly governed by internal diffusion, and the diffusion coefficient of Cu(II) by PSf/D2EHPA/CNT beads was found to be $2.19{\times}10^{-4}{\sim}2.64{\times}10^{-4}cm^2/s$. The Langmuir isotherm model predicted the experimented data well. The maximum removal capacity of Cu(II) obtained from this isotherm was 7.32 mg/g. Calculated thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$ and ${\Delta}S^o$ showed that the adsorption of Cu(II) ions onto PSf/D2EHPA/CNT beads was feasible, spontaneous and endothermic at 293-323 K.

Preparation of activated carbon incorporated polysulfone membranes for dye separation

  • Ingole, Pravin G.;Sawant, Sandesh Y.;Ingole, Neha P.;Pawar, Radheshyam R.;Bajaj, Hari C.;Singh, Kripal;Cho, Moo Hwan;Lee, Hyung Keun
    • Membrane and Water Treatment
    • /
    • 제7권6호
    • /
    • pp.477-493
    • /
    • 2016
  • Immediate use of activated carbon incorporated polysulfone membrane application for dye separation was reported in this work. Dimethylformamide (DMF) was used as the solvent for the membrane preparation. The membrane thus prepared were characterized in terms of surface morphology, ATR-FTIR, AFM, experimental results as membrane performance. The resultant nanofiltration (NF) membranes were tested with Congo red dye concentration 200 mg/L. The water permeability was found to be considerably higher than that reported in literature. Experimental results show that the real rejection of the Congo red is 99.57% over the transmembrane pressure 100 psi using 30% activated carbon incorporated membrane. Prepared NF membranes shows the corresponding permeates fluxes were $40Lm^{-2}h^{-1}$ to $82Lm^{-2}h^{-1}$ with different activated carbon percentage incorporated in polysulfone membrane. The present study demonstrated that dye rejection enhanced NF may be a feasible method for the dye wastewater treatment. The overall observations thus indicated that toxic residual dyes can be appreciably separated from the membrane technology, provided that the accompanying polymeric membrane, activated carbon as binding agents and the process parameter levels are astutely selected.

Polysulfone/SPEEK 블랜드 고분자 전해질 막 제조 및 특성 연구 (Preparation and Their Characterization of Blended Polymer Electrolyte Membranes of Polysulfone and Sulfonated Poly(ether ether ketone))

  • 천훈상;오민;홍성욱
    • 멤브레인
    • /
    • 제13권1호
    • /
    • pp.47-53
    • /
    • 2003
  • Poly(ether ether ketone)(PEEK)를 황산을 사용하여 설폰화시킨 후 폴리설폰과 다양한 조성으로 혼합하여 블렌드 고분자 전해질 막을 제조하였고 조성의 변화에 따른 메탄을 투과도, 수소이온전도도, 그리고 이온교환용량의 변화를 측정하였다. 폴리설폰의 경우 이온전도도는 낮은 반면에 메탄올에 대한 저항은 우수하였다. 그러나, 설폰화된 PEEK의 양이 증가함에 따라 메탄을 투과도와 수소이온전도도가 함께 증가하였다. 이온전도도와 메탄을 투과도의 비로부터 폴리설폰의 양이 20%일 때 가장 좋은 선택성을 가지는 것을 알 수 있었다.

Bacillus drentensis sp. 사균과 polysulfone으로 이루어진 미생물담체를 이용한 수용액 내 벤젠 제거 (Removal of Benzene in Solution by using the Bio-carrier with Dead Bacillus drentensis sp. and Polysulfone)

  • 박상희;이민희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권1호
    • /
    • pp.46-56
    • /
    • 2013
  • Laboratory scale experiments to remove benzene in solution by using the bio-carrier composed of dead biomass have been performed. The immobilized bio-carrier with dead Bacillus drentensis sp. and polysulfone was manufactured as the biosorbent. Batch sorption experiments were performed with bio-carriers having various quantities of biomass and then, their removal efficiencies and uptake capacities were calculated. From results of batch experiments, 98.0% of the initial benzene (1 mg/L) in 1 liter of solution was removed by using 40 g of immobilized bio-carrier containing 5% biomass within 1 hour and the biosorption reaction reached in equilibrium within 2 hours. Benzene removal efficiency slightly increased (99.0 to $99.4%{\pm}0.05$) as the temperature increased from 15 to $35^{\circ}C$, suggesting that the temperature rarely affects on the removal efficiency of the bio-carrier. The removal efficiency changed under the different initial benzene concentration in solution and benzene removal efficiency of the bio-carrier increased with the increase of the initial benzene concentration (0.001 to 10 mg/L). More than 99.0% of benzene was removed from solution when the initial benzene concentration ranged from 1 to 10 mg/L. From results of fitting process for batch experimental data to Langmuir and Freundlich isotherms, the removal isotherms of benzene were more well fitted to Freundlich model ($r^2$=0.9242) rather than Langmuir model ($r^2$=0.7453). From the column experiment, the benzene removal efficiency maintained over 99.0% until 420 pore volumes of benzene solution (initial benzene concentration: 1 mg/L) were injected in the column packed with bio-carriers, investigating that the immobilized carrier containing Bacillus drentensis sp. and polysulfone is the outstanding biosorbent to remove benzene in solution.

Polysulfone에 Carbon Nanotubes, Tributyl Phosphate와 Di-(2-ethylhexyl)-phosphoric Acid를 고정화한 하이브리드 비드의 제조와 Sr(II)의 제거 특성 (Preparation of Hybrid Beads Containing Polysulfone Modified with Carbon Nanotubes, Tributyl Phosphate and Di-(2-ethylhexyl)-phosphoric Acid and Removal Characteristics of Sr(II))

  • 감상규;서정호;윤종원;이민규
    • 공업화학
    • /
    • 제29권3호
    • /
    • pp.264-269
    • /
    • 2018
  • Polysulfone (PSf)에 탄소 나노 튜브(CNTs, carbon nano tubes)와 두 가지 추출제, di-(2-ethylhexyl)-phosphoric acid (D2EHPA)와 tributyl phosphate (TBP)를 고정화시킨 PSf/D2EHPA/TBP/CNTs 비드를 제조하였다. 제조한 비드의 특성은 SEM, TGA 및 FTIR로 분석하였다. 제조한 PSF/D2EHPA/TBP/CNTs 비드에 의한 Sr(II)의 제거속도는 유사 2차 속도식에 의해 잘 설명되었으며, Langmuir 등온식으로 구한 Sr(II)의 최대 제거 용량은 5.52 mg/g이었다. 본 연구에서 제조한 PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거효율은 TBP가 첨가되지 않은 PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거효율 보다 크게 향상되는 결과를 나타내었다.

Polysulfone에 Di-(2-ethylhexyl)-phosphoric acid와 Carbon Nanotubes를 고정화한 PSf/D2EHPA/CNTs 비드의 제조와 Sr(II)의 제거 특성 (Preparation of PSf/D2EHPA/CNTs Beads Immobilized with Carbon Nanotubes and Di-(2-ethylhexyl)-phosphoric acid on Polysulfone and Removal Characteristics of Sr(II))

  • 이민규;윤종원;서정호
    • Korean Chemical Engineering Research
    • /
    • 제55권6호
    • /
    • pp.854-860
    • /
    • 2017
  • 본 연구에서는 di-(2-ethylhexyl)-phosphoric acid (D2EHPA)와 carbon nanotubes (CNTs)를 polysulfone (PSf)에 고정화시켜 PSf/D2EHPA/CNTs 비드를 제조하였으며, 제조한 비드에 의한 Sr(II)의 제거특성을 살펴보았다. Scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR) 및 Thermo gravimetric analysis (TGA) 분석을 통하여 PSf/D2EHPA/CNTs 비드의 형태적 특성들을 조사하였다. PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거는 운전시간 60 min 정도에서 평형에 도달하였으며, 속도 실험결과는 유사 2차 속도식에 잘 부합하는 것으로 나타났다. 또한 PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거에서 Langmuir 식으로부터 구한 최대 제거량은 4.75 mg/g이었다. PSf/D2EHPA/CNTs 비드에 의한 Sr(II)의 제거효율은 추출제 D2EHPA 만을 사용하는 경우보다 CNTs를 첨가함으로써 Sr(II)의 제거량이 2.5배 정도 향상되는 결과를 보였다.

Polysulfone으로 Al(OH)3를 고정화한 PSf-Al(OH)3 비드에 의한 불소 이온의 제거 특성 (Removal Characteristics of Fluoride Ions by PSf-Al(OH)3 Beads Immobilized Al(OH)3 with Polysulfone)

  • 전진우;이민규
    • 청정기술
    • /
    • 제20권1호
    • /
    • pp.51-56
    • /
    • 2014
  • 본 연구에서는 폴리술폰(polysulfone, PSf)으로 알루미늄 수산화물(aluminum hydroxide, $Al(OH)_3$)을 고정화한 PSf-$Al(OH)_3$ 비드를 제조하였다. 제조한 PSf-$Al(OH)_3$ 비드에 의한 불소 이온 제거실험은 회분식으로 수행하였으며, pH, 초기농도, 공존이온과 같은 변수들의 영향을 살펴보았다. Langmuir 등온식으로 구한 불소 이온의 최대 제거량은 52.4 mg/g이었으며, 최적 pH 범위는 4~10이었다. PSf-$Al(OH)_3$ 비드에 의한 불소 이온의 제거과정은 전 단계에서 외부물질전달이 나중 단계에서 내부확산이 지배인 것을 알 수 있었다. 또한 PSf-$Al(OH)_3$에 의한 불소 이온의 제거에서 $HCO_3{^-}$, $SO{_4}^{2-}$, $NO_3{^-}$, $Cl^-$와 같은 공존 음이온들은 불소 이온의 제거에 방해를 하는 것으로 나타났다.