• Title/Summary/Keyword: Polypropylene(PP)

Search Result 691, Processing Time 0.022 seconds

A Study on Deformation and Strength of High-Strength Polymer Composites Using Automobiles (자동차용 고강도 폴리머 복합재료의 변형과 강도에 관한 연구)

  • Im, Jae-Gyu;Sin, Jae-Hun;Park, Han-Ju;Shoji, T.;Takeda, H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1082-1088
    • /
    • 2001
  • Nowadays study on recycling disused plastics for automobiles was lively progressed. Rubber and talcum powder was added to retrieve degradation of physical properties caused by recycling disused polypropylene. The effect of the temperature, the fatigue load and the loading speed on DEN(double edged notch) specimen which was made by the pp-rubber composites during fracture was studied by. DEN specimen was made on PP-rubber composites through the injection molding. With increasing temperature the fracture strength was linearly decreased and the fracture energy was increased by $0^{\circ}C$ and after that decreased. In the same temperature the fracture strength during increasing the notch radius was hardly increased. The fracture behaviour at low and high loading speed was different entirely. At high loading speed plastic region was small and fracture behaviour was seen to brittle fracture tendency. With increasing fatigue load fracture energy was first rapidly decreased and subsequently steady when radius of notch tip was 2mm, but Maximum load during fracture scarcely varied. The deformation mechanism of polypropylene-rubber composites during fracture was studied by SEM fractography. A strong plastic deformation of the matrix ahead of the notch/crack occurred. The deformation seem to be enhanced by a thermal blunting of the notch/crack.

Spalling Reduction Method of High-Strength Reinforced Concrete Columns Using Insulating Mortar (단열모르타르를 이용한 고강도콘크리트 기둥의 폭렬저감 방안)

  • Yoo, Suk-Hyeong;Lim, Seo-Hyeong
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.8-13
    • /
    • 2011
  • High Strength Concrete (HSC) has a disadvantage of the brittle failure under fire due to the spalling. The studies on spalling control method of new constructed HSC buildings were performed enough, but the studies on existing buildings are insufficient. The new inorganic refractory mortar is developed in this study. The insulating capacity is enhanced by using light weight fine aggregate and polypropylene (PP) fiber. In results of material test, the thermal conductivity of light weight fine aggregate get lower than general fine aggregate. And in results of column test, the fire resisting time is delayed 20 minutes by using light weight fine aggregate, 10 minutes by increasing finishing depth from 10 mm to 20 mm and 4 minutes by using 0.6 % PP fiber.

Preparation of Composite Membranes for Recovery of Unreacted Olefin Monomers (미반응 올레핀계 모노머 회수를 위한 복합막의 제조)

  • Kim, Hyun-Gi;Kim, Sang-Yong;Kim, Sung-Soo
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • Composite membranes were prepared for membrane/cold condensation process for recovery of unreacted olefin monomer from the polyolefin polymerization process by solution coating and plasma polymerization processes. Poly(dimethylsiloxane) (PDMS) solution was coated on polysulfone (PSF) support and increase of prepolymer content in solution made more dense membrane structure to result in the increase of separation factor while absolute flux decreased. Permeation of organic materials through the composite membranes follows the sorption and diffusion mechanism, which brought about the results that separation factor increased with critical temperature of the organic materials, and that flux increased with the increase of the molar volume. Crosslinking period affected the permeation characteristics. Other types of composite membranes were fabricated by plasma polymerization of siloxane materials on polypropylene (PP) and PSF supports. PP was tested as a support for composite membranes, which had not been used so far in solution coating process, and plasma polymerization made the composite membranes equivalent performances to those of membranes prepared by solution coating process.

Triboelectrostatic Separation of Mixed Three Kinds of Plastics by a Two-stage Separation Process (2단계(段階) 분리공정(分離工程)에 의한 3종(種) 혼합(混合)플라스틱의 마찰하전(摩擦荷電) 정전선별(靜電選別))

  • Park, Chul-Hyun;Jeon, Ho-Seok;Baek, Sang-Ho;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.57-64
    • /
    • 2007
  • Triboelectrostatic separation of mixed three kinds of plastics, PVC, PET and PMMA, in the range of similar gravity has been performed through a two-stage separation process. Polypropylene (PP) and high-impact polystyrene (HIPS) were found to be the most effective materials for a tribo-charger in the separation of PVC, PET and PMMA. In the 1st stage using the PP cyclone charger, PVC grade and recovery depended considerably on the air velocity (10 m/s), the relative humidity (<30%), the electric field (>200 kV/m) and the splitter position (+2 cm from the center) in the triboelelctrostatic separator unit. At an optimum condition a PVC grade of 99.6% and a recovery of 97.5% was achieved. In the 2nd stage using the HIPS cyclone charger, a PMMA grade of 98.3% and a recovery of 97.0% was obtained under the conditions of 10m/s air velocity, over 250 kV/m electric field, central splitter position and less than 40% relative humidity.

Influence of Blend Mode of Extender Oil on the Properties of EPDM/PP-Based Thermoplastic Vulcanizates (이피디엠/폴리프로필렌 열가소성 경화물에서 오일의 블렌드 방식이 경화물의 물성에 미치는 영향)

  • Na, Sung-Su;Song, Ki-Chan;Kim, Su-Kyung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.315-322
    • /
    • 2009
  • Influence of blend mode of extender oil on the properties of thermoplastic vulcanizates (TPVs), based on an ethylene-propylene-diene copolymer (EPDM) and a polypropylene (PP), was studied. The EPDM/PP TPVs were prepared in an open roll mill using two different modes in blending sequence of paraffinic oil and phenolic curative, i.e., Oil-Cure and Cure-Oil modes. Degree of cross-linking by gel fraction and properties such as hardness, tensile strength, elongation at break, and melt flow rate were investigated as a function of extender oil content for the two modes. Little influence of the blend mode of extender oil on the degree of cross-linking and mechanical behaviors was observed. However, the use of Cure-Oil mode in the preparation of EPDM/PP TPVs resulted in a marked increase in the level of processability as reflected by melt flow index, as compared to the use of Oil-Cure mode.

Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWCNT-reinforced Polypropylene Nanocomposites (다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성)

  • Yim, Yoon-Ji;Seo, Min-Kang;Kim, Hak-Yong;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.494-499
    • /
    • 2012
  • In this work, the effect of multi-walled carbon nanotube (MWCNT) on electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of MWCNT-reinforced polypropylene (PP) nanocomposites were investigated with varying MWCNT content from 1 to 10 wt%. Electric resistance was tested using a 4-point-probe electric resistivity tester. The EMI SE of the nanocomposites was evaluated by means of the reflection and adsorption methods. The mechanical properties of the nanocomposites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The morphologies were observed by scanning electron microscopy (SEM). From the results, it was found that the EMI SE was enhanced with increasing MWCNT content, which played a key factor to determine the EMI SE. The $K_{IC}$ value was increased with increasing MWCNT content, whereas the value decreased above 5 wt% MWCNT content. This was probably considered that the MWCNT entangled with each other in PP due to an excess of MWCNT.

Fabrication of Natural Fiber Composites through Hot Press and Analysis of Interfacial Adhesion (고온 프레스를 이용한 자연섬유 복합재료 제조와 계면 결합 분석)

  • Yi, Jin W.;Hwang, Byung S.;Lee, Jung H.;Nah, Chang W.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.26-31
    • /
    • 2006
  • In order to effectively improve interfacial adhesion strength between polypropylene (PP) and jute fiber, we particularly incorporated maleic anhydride grafted PP (MAPP) into the matrix through the environment-friendly process without an additional method of process and had better mechanical performances by providing the alignment into the natural fiber than those of the conventional fabrication technology such as an extrusion or injection molding. We also proposed hot pressing method which applied relatively low shear to the composites and confirmed the chemical bonds among the functional groups of MAPP and jute using FT-IR approach. The concentration of MAPP for maximum tensile strength and modulus was optimized at 3 wt%. Flexural properties had no noticeable tendency to increase with MAPP contents compared to tensile strength, which could probably be explained by the degree in wetting of PP/MAPP matrix.

  • PDF

Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete

  • Tahmouresi, Behzad;Koushkbaghi, Mahdi;Monazami, Maryam;Abbasi, Mahdi Taleb;Nemati, Parisa
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.193-206
    • /
    • 2019
  • Although concrete is the most widely used construction material, its deficiency in shrinkage and low tensile resistance is undeniable. However, the aforementioned defects can be partially modified by addition of fibers. On the other hand, possibility of adding waste materials in concrete has provided a new ground for use of recycled concrete aggregates in the construction industry. In this study, a constant combination of recyclable coarse and fine concrete aggregates was used to replace the corresponding aggregates at 50% substitution percentage. Moreover, in order to investigate the effects of fibers on mechanical and durability properties of recycled aggregate concrete, the amounts of 0.5%, 1%, and 1.5% steel fibers (ST) and 0.05%, 0.1% and 0.15% polypropylene (PP) fibers by volumes were used individually and in hybrid forms. Compressive strength, tensile strength, flexural strength, ultrasonic pulse velocity (UPV), water absorption, toughness, elastic modulus and shrinkage of samples were investigated. The results of mechanical properties showed that PP fibers reduced the compressive strength while positive impact of steel fibers was evident both in single and hybrid forms. Tensile and flexural strength of samples were improved and the energy absorption of samples containing fibers increased substantially before and after crack presence. Growth in toughness especially in hybrid fiber-reinforced specimens retarded the propagation of cracks. Modulus of elasticity was decreased by the addition of PP fibers while the contrary trend was observed with the addition of steel fibers. PP fibers decreased the ultrasonic pulse velocity slightly and had undesirable effect on water absorption. However, steel fiber caused negligible decline in UPV and a small impact on water absorption. Steel fibers reduce the drying shrinkage by up to 35% when was applied solely. Using fibers also resulted in increasing the ductility of samples in failure. In addition, mechanical properties changes were also evaluated by statistical analysis of MATLAB software and smoothing spline interpolation on compressive, flexural, and indirect tensile strength. Using shell interpolation, the optimization process in areas without laboratory results led to determining optimal theoretical points in a two-parameter system including steel fibers and polypropylene.

Liquefaction Characteristics of HDPE, PP and PS by Isothermal Pyrolysis (HDPE, PP 및 PS의 등온열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Park, Su-Yul;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.198-205
    • /
    • 2002
  • Isothermal pyrolysis of high density polyethylene(HDPE), polypropylene(PP) and polystyrene(PS) was performed at $450^{\circ}C$, respectively. The effect of pyrolysis time on yield and product composition was investigated. Conversion and liquid yield obtained during HDPE pyrolysis continuously increased with time up to 80minutes, but those of PP and PS did not largely change after 35minutes. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The major liquid product of HDPE pyrolysis was light oiH34 wt.% based on the amount of HDPE treated) and the amounts of the other liquid ingredients(gasoline, kerosene and wax) were almost the same. On the other hand, the pyrolysis of PP produced 27 wt.% gasoline, 22 wt.% kerosene, 24 wt.% light oil and 13wt.% wax, and the pyrolysis of PS produced 56 wt.% gasoline, 12 wt.% kerosene, 9 wt.% light oil and 13 wt.% wax.

A Study on the Mechanical, Thermal, Morphological, and Water Absorption Properties of Wood Plastic Composites (WPCs) Filled with Talc and Environmentally-Friendly Flame Retardants (친환경 난연제와 탈크를 첨가한 목재·플라스틱 복합재의 기계적, 열적, 형태학적 및 수분흡수 특성에 관한 연구)

  • Lee, Danbee;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • Wood plastic composite (WPC) is a green composite made of wood flour and thermoplastics to provide better performance by removing the defects of both wood and plastics. However, relatively low thermal stability and poor fire resistance of wood and plastics included in WPC have been still issues in using WPC as a building material for interior applications. This study investigated the effect of environmentally-friendly flame retardants (EFFRs) on the mechanical, thermal, morphological, and water absorption properties of wood flour (WF)/talc/polypropylene (PP) composites in comparison with neat PP. The whole EFFRs-filled WF/talc/PP composites showed higher values in flexural strength, flexural modulus, and impact strength compared to neat PP. In thermal properties, aluminum hydroxide (AH)-filled composite showed a $36^{\circ}C$ reduction in maximum thermal decomposition temperature ($T_{max}$) compared to neat PP, but magnesium hydroxide (MH) played an important role in improving thermal stability of filled composite by showing the highest $T_{max}$. From this research, it can be said that MH has potentials in reinforcing PP-based WPCs with improvement of thermal stability.