Abstract
Nowadays study on recycling disused plastics for automobiles was lively progressed. Rubber and talcum powder was added to retrieve degradation of physical properties caused by recycling disused polypropylene. The effect of the temperature, the fatigue load and the loading speed on DEN(double edged notch) specimen which was made by the pp-rubber composites during fracture was studied by. DEN specimen was made on PP-rubber composites through the injection molding. With increasing temperature the fracture strength was linearly decreased and the fracture energy was increased by $0^{\circ}C$ and after that decreased. In the same temperature the fracture strength during increasing the notch radius was hardly increased. The fracture behaviour at low and high loading speed was different entirely. At high loading speed plastic region was small and fracture behaviour was seen to brittle fracture tendency. With increasing fatigue load fracture energy was first rapidly decreased and subsequently steady when radius of notch tip was 2mm, but Maximum load during fracture scarcely varied. The deformation mechanism of polypropylene-rubber composites during fracture was studied by SEM fractography. A strong plastic deformation of the matrix ahead of the notch/crack occurred. The deformation seem to be enhanced by a thermal blunting of the notch/crack.