• Title/Summary/Keyword: Polyol process

Search Result 75, Processing Time 0.044 seconds

Morphology and Formation Mechanism of Sn Nanoparticles Synthesized by Modified Polyol Process at Various pH Values (변형 폴리올 공정에서 pH에 따라 합성된 Sn 나노입자의 형상 변화 및 형성기구)

  • Shin, Yong Moo;Lee, Jong-Hyun
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.578-584
    • /
    • 2014
  • To synthesize Sn nanoparticles (NPs) less than 30 nm in diameter, a modified polyol process was conducted at room temperature using a reducing agent, and the effects of different pH values of the initial solutions on the morphology and size of the synthesized Sn NPs were analyzed. tin(II) 2-ethylhexanoate, diethylene glycol, sodium borohydride, polyvinyl pyrrolidone (PVP), and sodium hydroxide were used as a precursor, reaction medium, reducing agent, capping agent, and pH adjusting agent, respectively. It was found by transmission electron microscopy that the morphology of the synthesized Sn NPs varied according to the pH of the initial solution. Moreover, while the size decreased to 11.32 nm with an increase up to 11.66 of the pH value, the size increased rapidly to 39.25 nm with an increase to 12.69. The pH increase up to 11.66 dominantly promoted generation of electrons and increased the amount of initial nucleation in the solution, finally inducing the reduced-size of the Sn particles. However, the additional increase of pH dominantly induced a decrease of PVP by neutralization, which resulted in acceleration of the agglomeration by collisions between particles.

Characterization and Manufacturing for Solar Cells $CuInS_2$ Nanopowder by polyol process (Polyol process를 이용한 태양전지용 $CuInS_2$ 나노분말 제조 및 특성평가)

  • Lee, Dae-Girl;Lee, Nam-Hee;Oh, Hyo-Jin;Yun, Yeong-Ung;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.30-32
    • /
    • 2009
  • In this study, $CuInS_2$ powders have been synthesized using polyol process of a mixture of copper nitrate, indium nitrate, and thiourea with various stoichiometric molar ratios in ethylene glycol at 196$^{\circ}C$. As boiling time goes by, the color of metal ion mixed solutions were changed transparent green to dark green and finally fumed to black by reduction of $OH^-$ radicals. The prepared powders were fully characterized by SEM, XRD and UV-Vis. The particle shape of black colored powders showed sphere with about 30 nm in particle size compared to those with dark green colored powders showed irregular shape with about 1 ${\mu}m$ in particle size. The XRD results showed highly crystallized $CuInS_2$. The UV-Vis spectra showed broad shoulder at 430 and 780 nm corresponding to 2.78 and 1.58 eV for the dark green colored one and black colored one, respectively.

  • PDF

Synthesis of Multiferroic Nanocomposites by a Polyol Method

  • Shim, In-Bo;Pyun, Jeffrey;Park, Yong-Wook;Uhm, Young-Rang;Kim, Chul-Sung
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.180-184
    • /
    • 2007
  • The material design and synthesis are of important to modem science and technology. Here, we report the synthesis of multifunctional nanomaterials with different properties: feroelecties $YMnO_3$ and multiferroic materials such as $CoFe_2O_4-YMnO_3,\;Fe_3O_4-YMnO_3,\;CoFe_2O_4-Cd_{0.85}Zn_{0.15}S,\;and\;Fe_3O_4-Cd_{0.85}Zn_{0.15}S$ nano-composites by using a chemical synthesis process. These results provide a simple and convenient synthesis process to produce multifunctional nanocomposites.

Synthesis of Metal Doped ZnO Nanoclusters by Microwave Assisted Polyol Process (마이크로웨이브 폴리올 공정에서 금속 도핑 산화아연 나노클러스터의 합성)

  • Kwon, Oh-San;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.525-533
    • /
    • 2014
  • ZnO has attracted much attention such as photocatalysts, sensors, piezoelectricity and etc. At present, an economical and rapid synthesis route based on the efficient microwave polyol process is used to synthesized metal-doped ZnO nanoclusters. Diethylene glycol has a property of high polarizability, and is an excellent microwave absorbing agent, thus leading to a high heating rate and a significantly shorter reaction time. In this study, metal-doped ZnO nanoclusters are obtained with different seed volumes, when zinc acetate dihydrate is used as a precursor, and metal acetate hydrate is used as a doped-metal and diethylene glycol is used as a solvent. The obtained metal-doped ZnO nanoclusters were characterized by FE-SEM, XRD, Raman and PSA.

Nano particle size control of Pt/C catalysts manufactured by the polyol process for fuel cell application (폴리올법으로 제조된 Pt/C 촉매의 연료전지 적용을 위한 나노 입자 크기제어)

  • Joon Heo;Hyukjun Youn;Ji-Hun Choi;Chae Lin Moon;Soon-Mok Choi
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.437-442
    • /
    • 2023
  • This research aims to enhance the efficiency of Pt/C catalysts due to the limited availability and high cost of platinum in contemporary fuel cell catalysts. Nano-sized platinum particles were distributed onto a carbon-based support via the polyol process, utilizing the metal precursor H2PtCl6·6H2O. Key parameters such as pH, temperature, and RPM were carefully regulated. The findings revealed variations in the particle size, distribution, and dispersion of nano-sized Pt particles, influenced by temperature and pH. Following sodium hydroxide treatment, heat treatment procedures were systematically executed at diverse temperatures, specifically 120, 140, and 160 ℃. Notably, the thermal treatment at 140 ℃ facilitated the production of Pt/C catalysts characterized by the smallest platinum particle size, measuring at 1.49 nm. Comparative evaluations between the commercially available Pt/C catalysts and those synthesized in this study were meticulously conducted through cyclic voltammetry, X-ray diffraction (XRD), and field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM EDS) methodologies. The catalyst synthesized at 160 ℃ demonstrated superior electrochemical performance; however, it is imperative to underscore the necessity for further optimization studies to refine its efficacy.