• Title/Summary/Keyword: Polynomial regression model

Search Result 215, Processing Time 0.03 seconds

Optimization of Process Parameters Using a Genetic Algorithm for Process Automation in Aluminum Laser Welding with Filler Wire (용가 와이어를 적용한 알루미늄 레이저 용접에서 공정 자동화를 위한 유전 알고리즘을 이용한 공정변수 최적화)

  • Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.67-73
    • /
    • 2006
  • Laser welding is suitable for welding to the aluminum alloy sheet. In order to apply the aluminum laser welding to production line, parameters should be optimized. In this study, the optimal welding condition was searched through the genetic algorithm in laser welding of AA5182 sheet with AA5356 filler wire. Second-order polynomial regression model to estimate the tensile strength model was developed using the laser power, welding speed and wire feed rate. Fitness function for showing the performance index was defined using the tensile strength, wire feed rate and welding speed which represent the weldability, product cost and productivity, respectively. The genetic algorithm searched the optimal welding condition that the wire feed rate was 2.7 m/min, the laser power was 4 kW and the welding speed was 7.95 m/min. At this welding condition, fitness function value was 137.1 and the estimated tensile strength was 282.2 $N/mm^2$.

Optimization of Fuzzy Inference Systems Based on Data Information Granulation (데이터 정보입자 기반 퍼지 추론 시스템의 최적화)

  • 오성권;박건준;이동윤
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

Two Machine Learning Models for Mobile Phone Battery Discharge Rate Prediction Based on Usage Patterns

  • Chantrapornchai, Chantana;Nusawat, Paingruthai
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.436-454
    • /
    • 2016
  • This research presents the battery discharge rate models for the energy consumption of mobile phone batteries based on machine learning by taking into account three usage patterns of the phone: the standby state, video playing, and web browsing. We present the experimental design methodology for collecting data, preprocessing, model construction, and parameter selections. The data is collected based on the HTC One X hardware platform. We considered various setting factors, such as Bluetooth, brightness, 3G, GPS, Wi-Fi, and Sync. The battery levels for each possible state vector were measured, and then we constructed the battery prediction model using different regression functions based on the collected data. The accuracy of the constructed models using the multi-layer perceptron (MLP) and the support vector machine (SVM) were compared using varying kernel functions. Various parameters for MLP and SVM were considered. The measurement of prediction efficiency was done by the mean absolute error (MAE) and the root mean squared error (RMSE). The experiments showed that the MLP with linear regression performs well overall, while the SVM with the polynomial kernel function based on the linear regression gives a low MAE and RMSE. As a result, we were able to demonstrate how to apply the derived model to predict the remaining battery charge.

Mode analysis and low-order dynamic modelling of the three-dimensional turbulent flow filed around a building

  • Lei Zhou;Bingchao Zhang;K.T. Tseb
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.381-398
    • /
    • 2024
  • This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.

A comparison of models for the quantal response on tumor incidence data in mixture experiments (계수적 반응을 갖는 종양 억제 혼합물 실험에서 모형 비교)

  • Kim, Jung Il
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1021-1026
    • /
    • 2017
  • Mixture experiments are commonly encountered in many fields including food, chemical and pharmaceutical industries. In mixture experiments, measured response depends on the proportions of the components present in the mixture and not on the amount of the mixture. Statistical analysis of the data from mixture experiments has mainly focused on a continuous response variable. In the example of quantal response data in mixture experiments, however, the tumor incidence data have been analyzed in Chen et al. (1996) to study the effects of 3 dietary components on the expression of mammary gland tumor. In this paper, we compared the logistic regression models with linear predictors such as second degree Scheffe polynomial model, Becker model and Akay model in terms of classification accuracy.

Rainfall Adjustment on Duration and Topographic Elevation (지속시간 및 표고에 따른 강우량 보정에 관한 연구)

  • Um, Myoung-Jin;Cho, Won-Cheol;Rim, Hae-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.7
    • /
    • pp.511-521
    • /
    • 2007
  • The objective of this study is to develop a method of rainfall adjustment on duration and topographic elevation for rainfall data in Jejudo. The method of rainfall adjustment is based on the polynomial regression analysis for the hourly rainfall data and the distribution of observatories of korea meteorological administration. As the results of modeling have shown, duration and rainfall are more correlated than topographic elevation and rainfall, and the model which considers only an elevation exaggerates the amount of rainfall adjustment. Hence the model of duration-elevation-rainfall is more competitive to the natural rainfall event than the model of topographic elevation-rainfall. However this model require to supplement a small number of rainfall observatories and short observed period.

Optimization of Gas Mixing-circulation Plasma Process using Design of Experiments (실험계획법을 이용한 가스 혼합-순환식 플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.359-368
    • /
    • 2014
  • The aim of our research was to apply experimental design methodology in the optimization of N, N-Dimethyl-4-nitrosoaniline (RNO, which is indictor of OH radical formation) degradation using gas mixing-circulation plasma process. The reaction was mathematically described as a function of four independent variables [voltage ($X_1$), gas flow rate ($X_2$), liquid flow rate ($X_3$) and time ($X_4$)] being modeled by the use of the central composite design (CCD). RNO removal efficiency was evaluated using a second-order polynomial multiple regression model. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9111, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and independent variables in a coded unit: RNO removal efficiency (%) = $77.71+10.04X_1+10.72X_2+1.78X_3+17.66X_4+5.91X_1X_2+3.64X_2X_3-8.72X_2X_4-7.80X{_1}^2-6.49X{_2}^2-5.67X{_4}^2$. Maximum RNO removal efficiency was predicted and experimentally validated. The optimum voltage, air flow rate, liquid flow rate and time were obtained for the highest desirability at 117.99 V, 4.88 L/min, 6.27 L/min and 24.65 min, respectively. Under optimal value of process parameters, high removal(> 97 %) was obtained for RNO.

Predicting Interesting Web Pages by SVM and Logit-regression (SVM과 로짓회귀분석을 이용한 흥미있는 웹페이지 예측)

  • Jeon, Dohong;Kim, Hyoungrae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.47-56
    • /
    • 2015
  • Automated detection of interesting web pages could be used in many different application domains. Determining a user's interesting web pages can be performed implicitly by observing the user's behavior. The task of distinguishing interesting web pages belongs to a classification problem, and we choose white box learning methods (fixed effect logit regression and support vector machine) to test empirically. The result indicated that (1) fixed effect logit regression, fixed effect SVMs with both polynomial and radial basis kernels showed higher performance than the linear kernel model, (2) a personalization is a critical issue for improving the performance of a model, (3) when asking a user explicit grading of web pages, the scale could be as simple as yes/no answer, (4) every second the duration in a web page increases, the ratio of the probability to be interesting increased 1.004 times, but the number of scrollbar clicks (p=0.56) and the number of mouse clicks (p=0.36) did not have statistically significant relations with the interest.

Assay Error for Improved Pharmacokinetic Modeling and Simulation of Vancomycin (반코마이신의 약물동태학적 모델링과 시뮬레이션의 향상을 위한 분석오차)

  • Burm, Jin Pil
    • YAKHAK HOEJI
    • /
    • v.57 no.1
    • /
    • pp.32-36
    • /
    • 2013
  • The purpose of this study was to determine the influence of assay error for improved pharmacokinetic modeling and simulation of vancomycin on the Bayesian and nonlinear least squares regression analysis in 24 Korean gastric cancer patients. Vancomycin 1.0 g was administered intravenously over 1 hr every 12 hr. Three specimens were collected at 72 hr after the first dose from all patients at the following times, at 0.5 hr before regularly scheduled infusion, at 0.5 hr and 2 hr after the end of 1 hr infusion. Serum vancomycin levels were analyzed by fluorescence polarization immunoassay technique with TDX-FLX. The standard deviation (SD) of the assay over its working range had been determined at the serum vancomycin concentrations of 0, 20, 40, 60, 80 and $120{\mu}g/ml$ in quadruplicate. The polynomial equation of vancomycin assay error was found to be SD $({\mu}g/ml)=0.0224+0.0540C+0.00173C^2$ ($R^2=0.935$). There were differences in the influence of weight with vancomycin assay error on pharmacokinetic parameters of vancomycin using the nonlinear least squares regression analysis but there were no differences on the Bayesian analysis. This polynomial equation can be used to improve the precision of fitting of pharmacokinetic models to optimize the process of model simulation both for population and for individualized pharmacokinetic models. The result suggests the improvement of dosage regimens for the better and safer care of patients receiving vancomycin.

Predictive mathematical model for the growth kinetics of Listeria monocytogenes on smoked salmon (온도와 시간을 주요 변수로한 훈제연어에서의 Listeria monocytogenes 성장예측모델)

  • Cho, Joon-Il;Lee, Soon-Ho;Lim, Ji-Su;Kwak, Hyo-Sun;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.120-124
    • /
    • 2011
  • Predictive mathematical models were developed for predicting the kinetics of growth of Listeria monocytogenes in smoked salmon, which is the popular ready-to-eat foods in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At these storage temperature, the primary growth curve fit well ($r^2$=0.989~0.996) to a Gompertz equation to obtain specific growth rate (SGR) and lag time (LT). The Polynomial model for natural logarithm transformation of the SGR and LT as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). Results indicate L. monocytogenes growth was affected by temperature mainly, and SGR model equation is $365.3-31.94^*Temperature+0.6661^*Temperature^{\wedge^2}$ and LT model equation is $0.1162-0.01674^*Temperature+0.0009303^*Temperature{\wedge^2}$. As storage temperature decreased $30^{\circ}C$ to $4^{\circ}C$, SGR decreased and LT increased respectively. Polynomial model was identified as appropriate secondary model for SGR and LT on the basis of most statistical indices such as bias factor (1.01 by SGR, 1.55 by LT) and accuracy factor (1.03 by SGR, 1.58 by LT).