• 제목/요약/키워드: Polynomial Regression

검색결과 361건 처리시간 0.027초

A Study on Neural Network Modeling of Injection Molding Process Using Taguchi Method (다구찌방법을 이용한 사출성형공정의 신경회로망 모델링에 관한 연구)

  • Choe, Gi-Heung;Yu, Byeong-Gil;Hong, Tae-Min;Lee, Gyeong-Don;Jang, Nak-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제20권3호
    • /
    • pp.765-774
    • /
    • 1996
  • Computer Integrated Manufacturing(CIM) requires models of manufacturing processes to be implemented on the computer. These models are typically used for determining optimal process control parameters or designing adaptive control systems. In spite of the progress made in the mechanistic modeling, however, empirical models derived from experimental data play a maior role in manufacturing process modeling. This paper describes the development of a meural metwork medel for injection molding. This paper describes the development of a nueral network model for injection molding process. The model uses the CAE analysis data based on Taguchi method. The developed model is, then, compared with the traditional polynomial regression model to assess the applicabilit in practice.

On the Spatial Registration Considering Image Exposure Compensation (영상의 노출 보정을 고려한 공간 정합 알고리듬 연구)

  • Kim, Dong-Sik;Lee, Ki-Ryung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제44권2호
    • /
    • pp.93-101
    • /
    • 2007
  • To jointly optimize the spatial registration and the exposure compensation, an iterative registration algorithm, the Lucas-Kanade algorithm, is combined with an exposure compensation algorithm, which is based on the histogram transformation function. Based on a simple regression model, a nonparametric estimator, the empirical conditional mean, and its polynomial fitting are used as histogram transformation functions for the exposure compensation. Since the proposed algorithm is composed of separable optimization phases, the proposed algorithm is more advantageous than the joint approaches of Mann and Candocia in the aspect of implementation flexibility. The proposed algorithm performs a better registration for real images than the case of registration that does not consider the exposure difference.

Dynamic Position of Vehicles using AHRS IMU Sense (AHRS IMU 센서를 이용한 이동체의 동적 위치 결정)

  • Back Ki-Suk;Lee Jong-Chool;Hong Soon-Hyun;Cha Sung-Yeoul
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.77-81
    • /
    • 2006
  • GPS cannot determine random errors such as multipath and signal cutoff caused by surrounding environment that determines the visibility of satellites and the speed of data creation and transmission is lower than the speed of vehicles, it is difficult to determine accurate dynamic positions. Thus this study purposed to implement a method of deciding the accurate dynamic position of vehicles by combining AHRS (Attitude Heading Reference System) IMU (Initial Measurement Unit) based on low-priced MEMS (Micro Electro Mechanical System) in order to provide the information of attitude, position and speed at a high transmission rate without external help. This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. The roll angle was $y=(A{\times}10^{-6})x^2 -(B{\times}10^{-5})x+Cr{\times}10^{-2}$ and the pitch angle was $y=(A{\times}10^{-6})x^2-(B{\times}10^{-7})x+C{\times}10^{-2}$, each of which was derived from second-degree polynomial regression analysis. It was also found that the heading angle was stabilized with variation less than $1^{\circ}$ after 60 seconds.

  • PDF

Estimation of Sensible and Latent Heat Fluxes Using the Satellite and Buoy Data (위성과 부이자료를 이용한 현.잠열 추정에 관한 연구)

  • 홍기만;김영섭;윤홍주;박경원
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2001년도 춘계 학술대회 논문집 통권 4호 Proceedings of the 2001 KSRS Spring Meeting
    • /
    • pp.104-110
    • /
    • 2001
  • Ocean heat fluxes over a wide region are generally estimated by an aerodynamic bulk fromula. Though a remote sensing technique can be expected to estimated global heat flux, it is difficult to obtain air temperature and specific humidity at sea surface by a remote sensor. In this study present a new method with which to determine near-sea surface air temperature from in situ data. Also, These methods compared with other methods. A new method used a linear regression equation between sea surface temperature and air temperature of the buoys data. In this study new method is validated using observed monthly mean data at the Japan Meteorological Agency(JMA), National Data Buoy Center(NDBC) and Tropical Ocean-Global Atmosphere(TOGA)-Tropical Atmosphere Ocean(TAO) buoys. The result that bias and rmse are 0.28, 1.5$0^{\circ}C$ respectively. The correlation coefficient is 0.98. Also, to retrieve near-sea surface specific humidity(Q) from good nonlinear regression relationship between vapor pressure(Ea) of buoy data and air temperature, after obtained the third-order polynomial function, compared with that of estimated from SSM/I empirical equation by Schussel et al(1995). The result that bias and rmse are -1.42 and 1.75(g/kg).

  • PDF

A Study on Development of a Prediction Model for the Sound Pressure Level Related to Vehicle Velocity by Measuring NCPX Measurement (NCPX 계측 방법에 따른 속도별 소음 데시벨 예측 모델 개발에 대한 연구)

  • Kim, Do Wan;An, Deok Soon;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • 제15권4호
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES : The objective of this study is to provide for the overall SPL (Sound Pressure Level) prediction model by using the NCPX (Noble Close Proximity) measurement method in terms of regression equations. METHODS: Many methods can be used to measure the traffic noise. However, NCPX measurement can powerfully measure the friction noise originated somewhere between tire and pavement by attaching the microphone at the proximity location of tire. The overall SPL(Sound Pressure Level) calculated by NCPX method depends on the vehicle speed, and the basic equation form of the prediction model for overall SPL was used, according to the previous studies (Bloemhof, 1986; Cho and Mun, 2008a; Cho and Mun, 2008b; Cho and Mun, 2008c). RESULTS : After developing the prediction model, the prediction model was verified by the correlation analysis and RMSE (Root Mean Squared Error). Furthermore, the correlation was resulted in good agreement. CONCLUSIONS: If the polynomial overall SPL prediction model can be used, the special cautions are required in terms of considering the interpolation points between vehicle speeds as well as overall SPLs.

The Effects of Welding Process Parameters on Weld bead Width in GMAW Processes (GMAW 공정 중 용접 변수들이 용접 폭에 미치는 영향에 관한 연구)

  • 김일수;권욱현;박창언
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.33-42
    • /
    • 1996
  • In recent years there has been a significant growth in the use of the automated and/or robotic welding system, carried out as a means of improving productivity and quality, reducing product costs and removing the operator from tedious and potentially hazardous environments. One of the major difficulties with the automated and/or robotic welding process is the inherent lack of mathematical models for determination of suitable welding process parameters. Partial-penetration, single-pass bead-on-plate welds were fabricated in 12mm AS 1204 mild steel flats employing five different welding process parameters. The experimental results were used to develop three empirical equations: curvilinear; polynomial; and linear equations. The results were also employed to find the best mathematical equation under weld bend width to assist in the process control algorithms for the Gas Metal Arc Welding(GMAW) process and to correlate welding process parameters with weld bead width of bead-on-plates deposited. With the help of a standard statistical package program. SAS, multipe regression analysis was undertaken for investigating and modeling the GMAW process, and significance test techniques were applied for the interpretation of the experimental data.

  • PDF

A Study on the Estimation Model of Liquid Evaporation Rate for Classification of Flammable Liquid Explosion Hazardous Area (인화성액체의 폭발위험장소 설정을 위한 증발율 추정 모델 연구)

  • Jung, Yong Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • 제33권4호
    • /
    • pp.21-29
    • /
    • 2018
  • In many companies handling flammable liquids, explosion-proof electrical equipment have been installed according to the Korean Industrial Standards (KS C IEC 60079-10-1). In these standards, hazardous area for explosive gas atmospheres has to be classified by the evaluation of the evaporation rate of flammable liquid leakage. The evaporation rate is an important factor to determine the zones classification and hazardous area distance. However, there is no systematic method or rule for the estimation of evaporation rate in these standards and the first principle equations of a evaporation rate are very difficult. Thus, it is really hard for industrial workplaces to employ these equations. Thus, this problem can trigger inaccurate results for evaluating evaporation range. In this study, empirical models for estimating an evaporation rate of flammable liquid have been developed to tackle this problem. Throughout the sensitivity analysis of the first principle equations, it can be found that main factors for the evaporation rate are wind speed and temperature and empirical models have to be nonlinear. Polynomial regression is employed to build empirical models. Methanol, benzene, para-xylene and toluene are selected as case studies to verify the accuracy of empirical models.

Laboratory/Field evaluation and calibration method of low-cost PM sensor for indoor PM2.5, PM10 measurement (실내 미세먼지 측정을 위한 저가형 PM 센서의 실험실/현장 평가 및 보정 방법)

  • Doheon, Kim;Dongmin, Shin;Jungho, Hwang
    • Particle and aerosol research
    • /
    • 제18권4호
    • /
    • pp.109-127
    • /
    • 2022
  • Recently, low-cost particulate matter (PM) sensors have been widely used in monitoring mass concentration. Maintaining the accuracy of the sensors is important and requires rigorous performance evaluation and calibration. In this study, two commercial low-cost PM sensors(LCS), Plantower PMS3003 and Plantower PMS7003, were evaluated in the laboratory and field with a reference-grade PM monitor (GRIMM 11-D). Laboratory evaluation was conducted with single/mixed particles of PSL (Poly Styrene Latex) in an acrylic chamber at 20℃ and relative humidity of 20%. Field evaluation was conducted inside a building of Yonsei University (Shinchon) from February 12 to March 31, 2022. In both evaluations, LCS measured values became different from reference measured values when the relative humidity was high or the outdoor air PM10/PM2.5 ratio was high. Based on the field evaluation, the LCS measured values were corrected through four different regression analysis models. As a result, the multivariate polynomial regression analysis model showed highest matching with the reference PM monitor (PM2.5 >0.9, PM10 >0.85). In this model, the PM10/PM2.5 ratio and relative humidity were chosen as independent variables.

Epidemiological application of the cycle threshold value of RT-PCR for estimating infection period in cases of SARS-CoV-2

  • Soonjong Bae;Jong-Myon Bae
    • Journal of Medicine and Life Science
    • /
    • 제20권3호
    • /
    • pp.107-114
    • /
    • 2023
  • Epidemiological control of coronavirus disease 2019 (COVID-19) is needed to estimate the infection period of confirmed cases and identify potential cases. The present study, targeting confirmed cases for which the time of COVID-19 symptom onset was disclosed, aimed to investigate the relationship between intervals (day) from symptom onset to testing the cycle threshold (CT) values of real-time reverse transcription-polymerase chain reaction. Of the COVID-19 confirmed cases, those for which the date of suspected symptom onset in the epidemiological investigation was specifically disclosed were included in this study. Interval was defined as the number of days from symptom onset (as disclosed by the patient) to specimen collection for testing. A locally weighted regression smoothing (LOWESS) curve was applied, with intervals as explanatory variables and CT values (CTR for RdRp gene and CTE for E gene) as outcome variables. After finding its non-linear relationship, a polynomial regression model was applied to estimate the 95% confidence interval values of CTR and CTE by interval. The application of LOWESS in 331 patients identified a U-shaped curve relationship between the CTR and CTE values according to the number of interval days, and both CTR and CTE satisfied the quadratic model for interval days. Active application of these results to epidemiological investigations would minimize the chance of failing to identify individuals who are in contact with COVID-19 confirmed cases, thereby reducing the potential transmission of the virus to local communities.

A Study on Estimation of Carotid Intima-Media Thickness(IMT) using Pulse Wave Velocity(PWV) (맥파전달속도를 이용한 내중막 두께 추정에 관한 연구)

  • Song, Sang-Ha;Jang, Seung-Jin;Kim, Wuon-Shik;Lee, Hyun-Sook;Yoon, Young-Ro
    • Journal of Biomedical Engineering Research
    • /
    • 제30권5호
    • /
    • pp.401-411
    • /
    • 2009
  • In this paper, we correct pulse wave velocity(PWV) with heart-rate and derive regression equations to estimate intima-media thickness(IMT). Widely used methods for diagnosis of arteriosclerosis are IMT and PWV. Arterial wall stiffness determines the degree of energy absorbed by the elastic aorta and its recoil in diastole but there is not correlation between sclerosis and IMT in an existing study. In this study, we will correct PWV with heart-rate and get regression equation to estimate IMT using heart-rate correction index(HCI). We executed experiments for this study. Made up question of physical condition and measured electrocardiogram(ECG), photoplethysmogram (PPG) of finger-tip and toe-tip and ultrasound image of carotid artery. Calculated PWV and IMT using ECG, PPG and ultrasound image. We found that every p-value between PWV and IMT is not significant(<0.05). But p-value between IMT and HCI which is a corrected PWV using heart-rate is significant(>0.01). We use HCI and various measured parameter for estimating regression equation and apply backward estimation to select parameters for regression analysis. Result of backward estimation, found that only HCI is possible to derive proper regression equation of IMT. Relationship between PWV and IMT is the second order. Result of regression equation of E-H PWV is $R^2$=0.735, adj $R^2$=0.711. This is the best correlation value. We calculate error of its analysis for verification of earlobe PWV regression equation. Its result is RMSEP=0.0328, MAPE(%) = 4.7622. Like this regression analysis, we know that HCI is useful parameter and relationship between PWV, HCI and IMT. In addition, we are able to suggest possibility which is that we can get different parameter of prediction throughout just one measurement.