• 제목/요약/키워드: Polynomial Model

검색결과 886건 처리시간 0.03초

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

이감직신간 제어계에 있어서 Routh안정기열과 MSE 을 이용한 새로운 혼합형 모델 절기법 (A New Combined Approximation for the Reduction of Discrete-Time Systems Using Routh Stability Array and MSE)

  • 권오신;김성중
    • 대한전기학회논문지
    • /
    • 제36권8호
    • /
    • pp.584-593
    • /
    • 1987
  • A new combined approximation method using Routh stability array and mean-square error (MSE) method is proposed for deriving reduced-order z-transter functions for discrete time systems. The Routh stability array is used to obtain the reduced-order denominator polynomial, and the numerator polynomial is obtained by minimizing the mean-square error between the unit step responses of the original system and reduced model. The advantages of the new combined approximation method are that the reduced model is always stable provided the original model is stable and the initial and steady-state characteristics of the original model can be preserved in the reduced model.

Improvement of WRF forecast meteorological data by Model Output Statistics using linear, polynomial and scaling regression methods

  • Jabbari, Aida;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.147-147
    • /
    • 2019
  • The Numerical Weather Prediction (NWP) models determine the future state of the weather by forcing current weather conditions into the atmospheric models. The NWP models approximate mathematically the physical dynamics by nonlinear differential equations; however these approximations include uncertainties. The errors of the NWP estimations can be related to the initial and boundary conditions and model parameterization. Development in the meteorological forecast models did not solve the issues related to the inevitable biases. In spite of the efforts to incorporate all sources of uncertainty into the forecast, and regardless of the methodologies applied to generate the forecast ensembles, they are still subject to errors and systematic biases. The statistical post-processing increases the accuracy of the forecast data by decreasing the errors. Error prediction of the NWP models which is updating the NWP model outputs or model output statistics is one of the ways to improve the model forecast. The regression methods (including linear, polynomial and scaling regression) are applied to the present study to improve the real time forecast skill. Such post-processing consists of two main steps. Firstly, regression is built between forecast and measurement, available during a certain training period, and secondly, the regression is applied to new forecasts. In this study, the WRF real-time forecast data, in comparison with the observed data, had systematic biases; the errors related to the NWP model forecasts were reflected in the underestimation of the meteorological data forecast by the WRF model. The promising results will indicate that the post-processing techniques applied in this study improved the meteorological forecast data provided by WRF model. A comparison between various bias correction methods will show the strength and weakness of the each methods.

  • PDF

반응표면법을 이용한 DTF의 석탄 연소 안전성 평가 (Assessment of Coal Combustion Safety of DTF using Response Surface Method)

  • 이의주
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.

공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석 (K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies)

  • 김욱동;오성권
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

다항식 뉴럴 네트워크의 최적화: 진화론적 방법 (Optimization of Polynomial Neural Networks: An Evolutionary Approach)

  • 김동원;박귀태
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권7호
    • /
    • pp.424-433
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Advanced Polynomial Neural Networks Architecture with New Adaptive Nodes

  • Oh, Sung-Kwun;Kim, Dong-Won;Park, Byoung-Jun;Hwang, Hyung-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.43-50
    • /
    • 2001
  • In this paper, we propose the design procedure of advance Polynomial Neural Networks(PNN) architecture for optimal model identification of complex and nonlinear system. The proposed PNN architecture is presented as the generic and advanced type. The essence of the design procedure dwells on the Group Method of Data Handling(GMDH). PNN is a flexible neural architecture whose structure is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated in a dynamic way. In this sense, PNN is a self-organizing network. With the aid of three representative numerical examples, compari-sons show that the proposed advanced PNN algorithm can produce the model with higher accuracy than previous other works. And performance index related to approximation and generalization capabilities of model is evaluated and also discussed.

  • PDF

다항식 뉴럴 네트워크의 최적화 : 진화론적 방법 (Optimization of Polynomial Neural Networks: An Evolutionary Approach)

  • 김동원;박귀태
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권7호
    • /
    • pp.424-424
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

위성영상의 DEM 생성을 위한 영상분할 방법의 적합성 평가 (Evaluation of The Image Segmentation Method for DEM Generation of Satellite Imagery)

  • 이효성;송정헌;김용일;안기원
    • 대한원격탐사학회지
    • /
    • 제19권2호
    • /
    • pp.149-157
    • /
    • 2003
  • 본 연구에서는 향후 지속적으로 제공되어질 고해상도 위성영상의 효율적인 대체 센서모델링을 위하여 SPOT-3호의 위성영상으로부터 대상영역에 영상분할을 실시하고 분할된 영상으로부터 분모항이 없는 RFM 즉, 3차 다항식 모델의 적용성을 고찰하였다. 대상영역 전체에 적용한 분모항이 있는 기존 RFM의 적합도와 비교한 결과, 평면오차는 3차 다항식 모델링 방법이 0.8m 정도 낮게 산출된 반면 표고오차는 기존의 RFM이 1.0m 정도 낮게 산출되었다.

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.