• Title/Summary/Keyword: Polymorphic markers

Search Result 570, Processing Time 0.03 seconds

Single Nucleotide Polymorphism Marker Discovery from Transcriptome Sequencing for Marker-assisted Backcrossing in Capsicum

  • Kang, Jin-Ho;Yang, Hee-Bum;Jeong, Hyeon-Seok;Choe, Phillip;Kwon, Jin-Kyung;Kang, Byoung-Cheorl
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.535-543
    • /
    • 2014
  • Backcross breeding is the method most commonly used to introgress new traits into elite lines. Conventional backcross breeding requires at least 4-5 generations to recover the genomic background of the recurrent parent. Marker-assisted backcrossing (MABC) represents a new breeding approach that can substantially reduce breeding time and cost. For successful MABC, highly polymorphic markers with known positions in each chromosome are essential. Single nucleotide polymorphism (SNP) markers have many advantages over other marker systems for MABC due to their high abundance and amenability to genotyping automation. To facilitate MABC in hot pepper (Capsicum annuum), we utilized expressed sequence tags (ESTs) to develop SNP markers in this study. For SNP identification, we used Bukang $F_1$-hybrid pepper ESTs to prepare a reference sequence through de novo assembly. We performed large-scale transcriptome sequencing of eight accessions using the Illumina Genome Analyzer (IGA) IIx platform by Solexa, which generated small sequence fragments of about 90-100 bp. By aligning each contig to the reference sequence, 58,151 SNPs were identified. After filtering for polymorphism, segregation ratio, and lack of proximity to other SNPS or exon/intron boundaries, a total of 1,910 putative SNPs were chosen and positioned to a pepper linkage map. We further selected 412 SNPs evenly distributed on each chromosome and primers were designed for high throughput SNP assays and tested using a genetic diversity panel of 27 Capsicum accessions. The SNP markers clearly distinguished each accession. These results suggest that the SNP marker set developed in this study will be valuable for MABC, genetic mapping, and comparative genome analysis.

Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng)

  • Jo, Ick Hyun;Kim, Young Chang;Kim, Dong Hwi;Kim, Kee Hong;Hyun, Tae Kyung;Ryu, Hojin;Bang, Kyong Hwan
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.444-449
    • /
    • 2017
  • The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

Analysis of Molecular Variance and Population Structure of Sesame (Sesamum indicum L.) Genotypes Using Simple Sequence Repeat Markers

  • Asekova, Sovetgul;Kulkarni, Krishnanand P.;Oh, Ki Won;Lee, Myung-Hee;Oh, Eunyoung;Kim, Jung-In;Yeo, Un-Sang;Pae, Suk-Bok;Ha, Tae Joung;Kim, Sung Up
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.321-336
    • /
    • 2018
  • Sesame (Sesamum indicum L.) is an important oilseed crop grown in tropical and subtropical areas. The objective of this study was to investigate the genetic relationships among 129 sesame landraces and cultivars using simple sequence repeat (SSR) markers. Out of 70 SSRs, 23 were found to be informative and produced 157 alleles. The number of alleles per locus ranged from 3 - 14, whereas polymorphic information content ranged from 0.33 - 0.86. A distance-based phylogenetic analysis revealed two major and six minor clusters. The population structure analysis using a Bayesian model-based program in STRUCTURE 2.3.4 divided 129 sesame accessions into three major populations (K = 3). Based on pairwise comparison estimates, Pop1 was observed to be genetically close to Pop2 with $F_{ST}$ value of 0.15, while Pop2 and Pop3 were genetically closest with $F_{ST}$ value of 0.08. Analysis of molecular variance revealed a high percentage of variability among individuals within populations (85.84%) than among the populations (14.16%). Similarly, a high variance was observed among the individuals within the country of origins (90.45%) than between the countries of origins. The grouping of genotypes in clusters was not related to their geographic origin indicating considerable gene flow among sesame genotypes across the selected geographic regions. The SSR markers used in the present study were able to distinguish closely linked sesame genotypes, thereby showing their usefulness in assessing the potentially important source of genetic variation. These markers can be used for future sesame varietal classification, conservation, and other breeding purposes.

Transferability of EST SSR-Markers from Foxtail Millet to Barnyard Millet (Echinochloa esculenta)

  • Myung Chul Lee;Yu-Mi Choi;Myoung-Jae Shin;Hyemyeong Yoon;Seong-Hoon Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.45-45
    • /
    • 2020
  • A large number of expressed sequence tags (ESTs) in public databases have provided an opportunity for the systematic development of simple sequence repeat (SSR) markers. EST-SSRs derived from conserved coding sequences show considerable cross-species transferability in related species. In the present study, we assessed the utility of foxtail millet EST-SSRs in barnyard millet. A total of 312 EST-SSRs of foxtail millet were tested using 84 Echinochloa crus-galli germplasm accessions; a high rate of transferability (62%) and 46 primer sets (13%) were shown the polymorphism in barnyard millet. The 13% of functional EST-SSRs) was demonstrated between cereals and barnyard millet. SSR marker profile data were scored for the computation of pairwise distances as well as a Neighbor Joining (NJ) tree of all the genotypes. The averaged values of gene diversity (HE) and polymorphism information content (PIC) were 0.213 and 0.179 within populations, respectively. The 84 barnyard millet germplasm accessions were divided into five different groups, which agreed well with their geographical origins. The exotic 12 accessions of India type barnyard millet (E. frumentacea) were all separated form Korean local collection genotype. The present results provide evidence of divergence between cultured and wild type barnyard, as a millet and grass. The polymorphic SSR markers indicated in this study were of great value in analysis of genetic diversity that can be further used for crop improvement through breeding.

  • PDF

Genetic Diversity and Population Structure of Korean Mint Agastache rugosa (Fisch & Meyer) Kuntze (Lamiaceae) Using ISSR Markers

  • Kang, Man Jung;Sundan, Suresh;Lee, Gi An;Ko, Ho Cheol;Chung, Jong Wook;Huh, Yun Chan;Gwag, Jae Gyun;Oh, Se Jong;Kim, Yeon Gyu;Cho, Gyu Taek
    • Korean Journal of Plant Resources
    • /
    • v.26 no.3
    • /
    • pp.362-369
    • /
    • 2013
  • Agastache rugosa, a member of the mint family (Labiatae), is a perennial herb widely distributed in East Asian countries. It is used in traditional medicine for the treatment of cholera, vomiting, and miasma. This study assessed the genetic diversity and population structures on 65 accessions of Korean mint A. rugosa germplasm based on inter simple sequence repeat (ISSR) markers. The selected nine ISSR primers produced reproducible polymorphic banding patterns. In total, 126 bands were scored; 119 (94.4%) were polymorphic. The number of bands generated per primer varied from 7 to 18. A minimum of seven bands was generated by primer 874, while a maximum of 18 bands was generated by the primer 844. Six primers (815, 826, 835, 844, 868, and 874) generated 100% polymorphic bands. This was supported by other parameters such as total gene diversity ($H_T$) values, which ranged from 0.112 to 0.330 with a mean of 0.218. The effective number of alleles ($N_E$) ranged from 1.174 to 1.486 with a mean value of 1.351. Nei's genetic diversity (H) mean value was 0.218, and Shannon's information index (I) mean value was 0.343. The high values for total gene diversity, effective number of alleles, Nei's genetic diversity, and Shannon's information index indicated substantial variations within the population. Cluster analysis showed characteristic grouping, which is not in accordance with their geographical affiliation. The implications of the results of this study in developing a strategy for the conservation and breeding of A. rugosa and other medicinal plant germplasm are discussed.

Analysis of Genetic Diversity in Thirteen Turfgrass Cultivars Cultivated at Golf Courses Using RAPD Markers (RAPD마커를 이용한 국내골프장의 잔디 13 품종의 유전적 다양성 분석)

  • Kim, Min-Jeong;Kim, Tae-Soo;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.57-63
    • /
    • 2012
  • This study was carried our to examine the genetic relationship of 13 commercial turfgrass cultivars using Random Amplified Polymorphic DNA to provide genetic informations more efficient golf course management. Analysis of 56 random hexamer primers generated 13 to 54 polymorphic bands among the 13 cultivars with an average of 30.7 bands per primer. The results of cluster analysis based on RAPDs revealed that three major variety groups: Group I - 'Shadow II', 'Aurora Gold', 'Little Bighorn Blue', 'PennA-1', and 'PennA-4'; Group II - 'Midnight II', 'Prosperity', 'Moon light SLT', 'Bright star SLT', and 'Silver dollar'; and Group III - 'Olympic Gold', 'Silver Star', and 'Tar Heel II'. The genetic similarity coefficients among 13 turfgrass cultivars ranged from 0.039 to 1.0 with highest coefficient in Group III. Studies on morphological characters and the effective molecular markers such as sequence characterized amplified regions are further needed to identify relationships and genetic diversities within species and among species.

Bandsharing Values and Genetic Distances of Two Wild Shortnecked Clam, Ruditapes philippinarum Populations from the Yellow Sea Assessed by Random Amplified Polymorphic DNAs-Polymerase Chain Reaction

  • Yoon, Jong-Man;Kim, Yong-Ho
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.12-23
    • /
    • 2004
  • Genomic DNAs were extracted from the muscle of twenty-two specimens of two shortnecked clam, Ruditapes phifippinarum populations collected in Anmyeondo and Seocheon. Genetic differences within and between populations were analysed by random amplified polymorphic DNAs-polymerase chain reaction (RAPD-PCR) using twenty arbitrary decamer primers. Out of 20 primers, 6 generated a total of 1,111 major and minor RAPD bands from individuals of two sites, producing approximately 4.2 average polymorphic bands per primer in individuals from Anmyeondo and ranging in size from less than 50 to larger than 1,500 base pairs (bp). The electrophoretic analysis of RAPD products amplified showed moderate levels of similarity among the different individuals in Seo-cheon population. The average bandsharing values (BS value) of the samples within population from Anmyeondo ranged from 0.155 to 0.684, whereas it was 0.143∼0.782 within population from Seocheon. The average BS value between individuals No. 13 and No. 14 from Seocheon was 0.782 which was higher than that of those from Anmyeondo. The single linkage dendrogram resulted from three primers (OPA-08, -09 and -20), indicating six genetic groupings composed of group 1 (No.4, 8 and 10), group 2 (No. 18), group 3 (No.2, 5 and 7), group 4 (No. 1, 3, 6, 9, 11, 12, 13, 14, 15 and 17), group 5 (16, 19 and 20) and group 6 (No. 21 and 22). In the Seocheon population, the individual No. 18 clustered distinctly from the others of this population. The observed genetic distance between the two populations from Anmyeondo and Seocheon was more than 0.209 (0.247 and 0.275). The shortest genetic distance (0.094) displaying significant molecular differences was between individuals No. 13 and No. 14. Especially, the genetic distance between individuals No. 22 and the remnants among individuals in two geographical populations was highest (0.275). This result illustrated that individual No.22 is distinct from other individuals within two shortnecked populations. The different geographical features of two sites may have caused the genetic diversity in two shortnecked clam populations.

Construction of Deletion Map of 16q by LOH Analysis from HCC Patients and Physical Map on 16q 23.3 - 24.1 Region

  • Chung, Jiyeol;Choi, Nae Yun;Shim, Myoung Sup;Choi, Dong Wook;Kang, Hyen Sam;Kim, Chang Min;Kim, Ung Jin;Park, Sun Hwa;Kim, Hyeon;Lee, Byeong Jae
    • Genomics & Informatics
    • /
    • v.1 no.2
    • /
    • pp.101-107
    • /
    • 2003
  • Loss of heterozygosity (LOH) has been used to detect deleted regions of a specific chromosome in cancer cells. LOH on chromosome 16q has been reported to occur frequently in progressed hepatocellular carcinoma (HCC). Liver tissues from 37 Korean HCC patients were analyzed for LOH by using 25 polymorphic microsatellite markers distributed along 16q. Out of the 37 HCC patients studied, 21 patients (56.8%) showed LOH in various regions of 16q with at least one polymorphic marker. Puring the analysis of these 21 LOH cases, 6 patients showed interstitial LOHs in which the boundary of the LOH region was defined. With two rounds of LOH analysis, five commonly occurring interstitial LOH regions were identified; 16q21-22.1, 16q22.2 - 22.3, 16q22.3, 16q23.2 and 16q23.3 - 24.1. Among the five LOH regions the 16q23.3 - 24.1 region has been reported to be related with chromosome instability. A complete physical map, which covers the 3.2 Mb region of 16q23.3 - 24.1 (D16S402 and D16S486), was constructed to identify novel candidate tumor suppressor genes. We provide the minimally tiling path map consisting of 28 BAC clones. There was one gap between NT_10422.11 and NT_019609.9 of the human genome sequence contig (NCBI sequence build 33, April 29, 2003). This gap can be filled by sequencing the R-1425M20 clone which bridges these sequence contigs.

Analysis of Genetic Variation of Perilla Germplasm Using RAPD (RAPD를 이용한 들깨 유전자원의 유전적 변이 분석)

  • Kim, Doh-Hoon;Yang, Bo-Kyung;Kim, Hyeon-Kyoung;Kim, Na-Young;Jeong, Soon-Jae;Kim, Ik-Soo;Nam, Jae-Sung;Lee, Jai-Heon;Chung, Dae-Soo
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.221-226
    • /
    • 2003
  • Genetic variation of Perilla germplasms was investigated using RAPD markers. Forty-two Perilla frutescens lines and cultivars collected form locals were subjected to RAPD analysis using 220 primers. Among them only 13 primers showed polymorphic bands and these 13 primers provided a total of 144 bands, consist of 115 polymorphic and 29 monomorphic ones. The polymorphic bands were subjected to phylogenetic analysis using UPGMA and maximum parsimony (MP) methods. In the UPGMA method, similarity coefficiency of 42 Perilla frutescens lines and cultivars ranged from 0 to 0.7842. The dendrogram of 42 lines and cultivars obtained through UPGMA method resulted in two major groups, and the similar clustering pattern was found by MP method, suggesting Perilla germplasms utilized in this study truly can be divided into two major groups. Although the two major groups were consistent roughly with their phenotypes (under of node, weight of 1,000 grains, and oil content), in detail, much inconsistency also was present.

Genetic diversity among cultivated and wild Panax ginseng populations revealed by high-resolution microsatellite markers

  • Jang, Woojong;Jang, Yeeun;Kim, Nam-Hoon;Waminal, Nomar Espinosa;Kim, Young Chang;Lee, Jung Woo;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.637-643
    • /
    • 2020
  • Background: Ginseng (Panax ginseng Meyer) is one of the world's most valuable medicinal plants with numerous pharmacological effects. Ginseng has been cultivated from wild mountain ginseng collections for a few hundred years. However, the genetic diversity of cultivated and wild ginseng populations is not fully understood. Methods: We developed 92 polymorphic microsatellite markers based on whole-genome sequence data. We selected five markers that represent clear allele diversity for each of their corresponding loci to elucidate genetic diversity. These markers were applied to 147 individual plants, including cultivars, breeding lines, and wild populations in Korea and neighboring countries. Results: Most of the 92 markers displayed multiple-band patterns, resulting from genome duplication, which causes confusion in interpretation of their target locus. The five high-resolution markers revealed 3 to 8 alleles from each single locus. The proportion of heterozygosity (He) ranged from 0.027 to 0.190, with an average of 0.132, which is notably lower than that of previous studies. Polymorphism information content of the markers ranged from 0.199 to 0.701, with an average of 0.454. There was no statistically significant difference in genetic diversity between cultivated and wild ginseng groups, and they showed intermingled positioning in the phylogenetic relationship. Conclusion: Ginseng has a relatively high level of genetic diversity, and cultivated and wild groups have similar levels of genetic diversity. Collectively, our data demonstrate that current breeding populations have abundant genetic diversity for breeding of elite ginseng cultivars.