• Title/Summary/Keyword: Polymeric resin

Search Result 80, Processing Time 0.029 seconds

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.

Developement of the reinforced acrylic-based hybrid denture composite resin with vinyloligosilsesquioxane (POSS)

  • Nam, Kwang-Woo;Chang, Myung-Woo;Chang, Bok-Sook;Han, Dong-Hoo;Shim, June-Sung;Chang, Ik-Tae;Heo, Seong-Joo;An, Jung-Ho;Chung, Dong-June
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.6
    • /
    • pp.782-790
    • /
    • 2000
  • The mainly used polymeric material for the denture is PMMA because of its cost and easiness to handle. So it was widely used material among dentists for past decades. But the acrylic-based denture materials have several common weak points such as shrinkage after curing and lack of strength. In order to solve these problems, we adapted one of hybrid system using acrylic polymer and vinyloligosilsesquioxane(POSS). POSS, which is a well known expandable monomer during polymerization process, may eventually suppress volumetric shrinkage. And the hybrid system makes it possible for the polymer to be stable in various severe conditions. Eight different kinds of samples were designed and synthesized. Each samples were characterized with dynamic mechanical analyser(DMA) to confirm their thermodynamic properties, fractured to analyze the cross-sectional morphology of the samples. And elongation, flexural and impact tests were also executed to evaluate the mechanical properties of the samples. From the results, hybrid composites had well defined crosslinked network structure compared to the widely used denture materials, and the mechanical strength improved without changing any surface condition as increment with POSS ratio in hybrid system. Fractured morphology showed homogeneous surfaces in spite of mutli component system, therefore we can conclude that the adoption of the POSS brought the reinforcement of the denture resin.

  • PDF

Development of a Water-soluble Dry Lubricant for Nuclear Fuel Rod Protection (핵 연료봉 표면보호를 위한 수용성 건식 윤활제 개발)

  • Chung, Keunwoo;Kim, Young-Wun;Lee, Sangbong;Hong, Jongsung;Han, Sangjae;Oh, Myoungho
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.343-349
    • /
    • 2014
  • Currently, in order to resist the scratching of the fuel rod surface while fabricating the fuel assembly of the light-water nuclear reactor, we use a solution of nitrocellulose, an explosive material, as a dry lubricant along with its solvent. However, the demand for developing safe and harmless aqueous alternative materials for environment-conservation and field-worker safety has increased. In this study, we demonstrate the preparation of a novel aqueous resin composite using a formulation of aqueous polymeric resin, alcoholic solvent, and water. Subsequently, we characterize this composite on the basis of hardness, adhesive property, and water solubility using plates similar to the fuel rod material. The insertion test of a fuel rod coated with the YS-3 composite shows load values of $18.8-20.5kg/cm^2$, which is comparable with $18.8-20.5kg/cm^2$ of the nitrocellulose coating agent. In addition, the depth and width of longitudinal scratches caused by the YS-3 composite test are 50% higher than those of the standard. We can develop a harmless and safe aqueous dry lubricant to replace the existing NC products through field testing of 264 pieces of fuel rods, after producing 350 kg of the YS-3 prototype. The scratch test for the rod surface showed that weight of chip of YS-3 prototype was smaller than that of NC before and after solvent treatment, indicating the properties of YS-3 prototype was comparable to the counterpart.

Development of High Performance Nanocomposites using Functionalized Plant Oil Resins (식물성오일 레진을 이용한 고기능성 나노 복합재료의 개발)

  • Han, Song-Yi;Jung, Young-Hee;Oh, Jeong-Seok;Kaang, Shin-Young;Hong, Chang-Kook
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • In this study, in order to develop renewable bio-based nanocomposites, multi-functional nanocomposites from soybean resins (AESO, MAESO) and nanoclay were prepared. Photoelectrodes for environmental friendly dye-sensitized solar cell using soybean resin were also prepared. Organo-modified nanoclay was directly dispersed in functionalized soybean resins after mixing with styrene as a comonomer and radical initiator was used to copolymerize the nanocomposites. The observed morphology was a mixture of intercalated/exfoliated structure and the physical properties were improved by adding nanoclay. A nanocomposite using MAESO, which added COOH functional group to the soybean resin, showed better dispersibility than AESO composites. Ultrasonic treatment of the nanocomposites also improved the physical properties. Nanoporous $TiO_2$ photoelectrode was also prepared using soybean resins as a binder, after acid-treatment of $TiO_2$ surface using nitric acid. Dye-sensitized solar cells were prepared after adsorbing dye molecules on it. The $TiO_2$ photoelectrode prepared using soybean binder had high current density because of increased surface area by improved dispersibility. The photoelectrochemical properties and conversion efficiency of the solar cell were significantly improved using the soybean binder.

Performance Characteristics of No-Fines Polymer Concrete using Recycled Coarse Aggregate with Binder Contents (결합재의 함량에 따른 순환굵은골재 사용 무세골재 폴리머 콘크리트의 성능 발현 특성)

  • Kim, Do-Heon;Jung, Hyuk-Sang;Kim, Dong-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.433-442
    • /
    • 2021
  • In this study, the properties of no-fines polymer concrete with different polymer binder contents were evaluated. The polymer concrete was formulated using a polymeric binder (unsaturated polyester resin), fly ash, and recycled coarse aggregate (60%) and crushed coarse aggregate (40%). The polymeric binder content (4.0-6.0wt.%) was used as an experimental variable because it dramatically affects both the cost-effectiveness and material properties. The results showed that the density, compressive strength, flexural strength both before and after exposure to freezing and thawing increased as the polymer binder content increased, while the absorption, void ratio, permeable voids, coefficient of permeability, and acid resistance (mass loss by acid attack) decreased as the polymeric binder content increased. In particular, even though the void ratio was 18.4% and the water permeability coefficient was 7.3mm/sec, the compressive strength and flexural strength were as high as 38.0MPa and 10.0MPa, respectively, much more significant than those of previous studies. Other properties such as absorption and acid resistance were also found to be excellent. The results appear to be rooted in the increased adhesion of the binder by adding a cross-linking agent and the surface hydrophobicity of the polymer.

An Experimental Study on Friction and Wear Characteristics of Air Curable $MoS_2$ Bonded Films with Polymeric Binder Materials (결합제 변화에 따른 상온 경화성 접착형 $MoS_2$ 고체윤활 피막의 마찰.마모 특성)

  • 한흥구;공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.72-78
    • /
    • 1998
  • In this work, the effects of binder materials on the tribological behavior were experimentally evaluated for air curable MoS$_2$bonded film lubricants. The binders tested were basically alkyd and acryl based resins, and also were modified by nitro-cellulose in various weight percentages. Effects on the binder ratio to solid lubricants and the molecular weight of binders were also investigated in all aspects of the tribological behavior. For the tests, LFW-1 and Falex tester were used to measure mainly the endurance life and load carrying capacity of bonded lubricants. Results showed that lubricants of methacrylic resin has the better performance than those of other resins, and also the properties of lubricants both of alkyd and acrylic resins could be improved by modification with nitro-cellulose. It was also shown that the optimum ratio of nitro-cellulose related closely to the binder material and the testing machine.

Hybridization and Functionalization of Aqueous-based Polyurethanes

  • Chen, Kan-Nan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.129-129
    • /
    • 2006
  • Conventional solvent-based polyurethane (PU) is well established for wide applications, such as textile treatments, surface coating, adhesive and so on. Due to the demands of safety, economic, and environmental protection, the solvent-based PU is restricted and has been phasing out and aqueous-based PU is becoming the world market trend, which is an environmental friendly product. The chemical resistance, physical and mechanical properties of aqueous-based PU are still not competible with solvent-based PU. Because of aqueous-based PU is a linear thermoplastic polymer with lower average molecular weight. Their improvements are normally performed by a post-curing reaction or a polymer hybridization to enhance the polymer cross-linking density. Hybridization of PU with aqueous-based epoxy resin or acrylate emulsion and then cured by a curing agent for improving the performance properties and reducing the cost of aqueous-based PU.Furthermore, a special function is added to aqueous-based PU increasing the application value, for examples, flame retardation, polymeric dyes, hydrophilic and etc.

  • PDF

Buckling of T-Shaped Composite Columns (T형 복합재료 기둥의 좌굴)

  • Lee Seungsik;Back Sung-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.57-62
    • /
    • 2006
  • Composite thin-walled members for civil engineering application are mainly produced by pultrusion technique, and they are generally made of a polymeric resin system reinforced by E-glass fibers due to economical reason. This material combination results in low elastic moduli of the composite materials and makes the design of composite members to be governed by stability limit state. Therefore the buckling behavior of composite thin-walled members was experimentally investigated in the present study. Axial compression was applied on each specimens by a hydraulic ram and knife edge fixtures were placed at both ends to simulate simple boundary condition. Axial compression, lateral displacements and twisting at the mid-height of each specimen were measured by a set of transducers during buckling test. The experimental buckling loads were compared with analytical results obtained through isotropic formulas. In the calculation of analytical results, elastic properties such as Young's modulus(E) and shear modulus(G) were replaced with EL and GLT obtained from coupon tests, respectively.

Electrochemical Behaviors of Activated Carbons Prepared from Polymeric Precursor

  • Park, Soo-Jin;Lee, Eun-Jung;Kim, Byung-Joo;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.134-136
    • /
    • 2007
  • In this work, activated carbons (ACs) were prepared from polystyrene-based cation-exchangeable resin (PSI) by a chemical activation with KOH as an activating agent. The surface morphologies were observed by using SEM, and the textural properties were investigated by using nitrogen adsorption at 77 K. From the experimental results, it was found that the well-developed micro- and mesopores were produced by a chemical activation, and the textural properties including specific surface areas and pore volumes were greatly enhanced. The electrochemical behaviors of the ACs showed similar phenomena with that of textural properties. These results indicated that KOH activation played an important role in the changes of surface, and pore structures, resulting in enhancing the electrochemical properties of the ACs prepared in present work.

QUALITY STABILIZATION OF BALL SEAT IN AUTOMOTIVE SUSPENSION PARTS

  • KANG T.-H.;KIM I.-K.;KIM Y.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.507-511
    • /
    • 2005
  • Recently, many solution have been suggested to development of plastic products. Among many manufacturing technologies for plastic parts, the injection molding process is very attractive because of its low production cost and short cycle time. In this paper, the plastic ball seat of a ball joint, one of the essential components for automotive suspension or steering system, was studied to enhance its mechanical performance and durability by using PA66 that is reinforced polymeric plastic resin. But ball seat has some trouble in manufacture process. And strength of molded part is not enough to use. For the quality stabilization and reliability of injection molded parts, we designed the mold cavities through analytical simulation software and tested the mechanical performance for the injection molded ball-seat parts. After modification, tensile strength increases by about $13.5\%$. Strength and quality stabilization is improved.