• 제목/요약/키워드: Polymeric binders

검색결과 24건 처리시간 0.018초

고전압에 적용 가능한 대전방지 코팅제용 바인더의 합성에 관한 연구 (Study on the Synthesis of the Binder for Antistatic Coating Applicable under High Voltage)

  • 김재영;양희준;박나영;최영주;이성민;정대원
    • 공업화학
    • /
    • 제24권2호
    • /
    • pp.196-200
    • /
    • 2013
  • 고전압 하에서도 표면 저항을 유지할 수 있는 대전방지 보호필름용 코팅액의 바인더에 관하여 연구하였다. 구체적으로는 폴리에틸렌 글리콜(PEG)과 폴리프로필렌 글리콜(PPG)을 주성분으로 하는 다양한 조성의 폴리에스터계 바인더를 합성하여 전도성 고분자와의 배합을 통하여 필름을 제조한 후에 고전압 하에서의 표면 저항의 변화를 조사하였다. PEG와 PPG의 조성과 상관없이 10 V의 전압 하에서는 $10^7{\sim}10^8{\Omega}/{\square}$의 범위를 나타내었으나, 1000 V 하에서는 표면저항이 $2{\times}10^{10}{\Omega}/{\square}$ 이상으로 변화하여 대전방지 용도로는 사용할 수 없었다. 그러나 PPG의 10 mol%를 1,4-butandiol(BD)로 대체하여 합성한 폴리에스터 중에서 PEG 함량이 25 mol%인 바인더([PEG]/[PPG]/[BD] = 25.0/67.5/7.5)에서는 1000 V 하에서도 $2.8{\times}10^9{\Omega}/{\square}$을 나타내, 고전압 하에서도 대전방지용으로 사용할 수 있는 것으로 나타났다. 이결과는 BD의 소수성에 의하여 고전압 하에서도 표면 저항이 유지될 수 있다는 것을 시사하고 있다.

폴리머 시멘트 고화체에 대한 구조적 건전성 평가 (An Evaluation of the Structural Integrity of the Polymer-Modified Cement Waste Form)

  • 지영용;곽경길;홍대석;김태국;류우석
    • 방사성폐기물학회지
    • /
    • 제9권2호
    • /
    • pp.81-86
    • /
    • 2011
  • 폴리머 시멘트 고화체는 일반 몰타르 내의 시멘트 수화물을 폴리머 개질제를 이용하여 부분적으로 대체함으로써 그 기능을 강화시킨 복합재료로써, 특히 시멘트 몰타르에 폴리머를 첨가하는 것은 그 화학적 내구성을 향상시킨다고 알려져 있다 따라서 본 연구에서는 고화재료로서의 폴리머 시멘트에 대한 낮은 침투성 및 낮은 이온 확산도 등과 같은 향상된 화학적 내구성을 확인하기 위하여 폴리머 시멘트 시편들을 제조하였다. 이때 폴리머의 함량은 0 에서부터 30%까지 변화시켰으며, 물에 대한 시멘트 비 (W/C)를 33%와 50%로 각각 유지 시켰다. 충분히 경화시킨 후에, 제조된 시편들에 대한 구조적 건전성을 압축강도와 수침법에 의한 공극도를 통하여 평가하였다. 그 결과, W/C 비가 33%이고, 폴리머 함량이 약 10%인 폴리머 시멘트 시편에서 가장 향상된 개질변화를 얻을 수 있었다. 끝으로 이 최적의 조합비를 가지는 시편에 대하여 ANS 16.1에 따르는 침출시험을 수행하였으며, 그 결과를 일반 시멘트 고화체와 비교하였다.

테잎캐스팅을 이용한 전고체전해질 Li7La3Zr2O12 후막 제조 (Fabrication of Solid State Electrolyte Li7La3Zr2O12 thick Film by Tape Casting)

  • 신란희;손삼익;류성수;김형태;한윤수
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.379-383
    • /
    • 2016
  • A thick film of $Li_7La_3Zr_2O_{12}$ (LLZO) solid-state electrolyte is fabricated using the tape casting process and is compared to a bulk specimen in terms of the density, microstructure, and ion conductivity. The final thickness of LLZO film after sintering is $240{\mu}m$ which is stacked up with four sheets of LLZO green films including polymeric binders. The relative density of the LLZO film is 83%, which is almost the same as that of the bulk specimen. The ion conductivity of a LLZO thick film is $2.81{\times}10^{-4}S/cm$, which is also similar to that of the bulk specimen, $2.54{\times}10^{-4}S/cm$. However, the microstructure shows a large difference in the grain size between the thick film and the bulk specimen. Although the grain boundary area is different between the thick film and the bulk specimen, the fact that both the ion conductivities are very similar means that no secondary phase exists at the grain boundary, which is thought to originate from nonstoichiometry or contamination.

폴리머 콘크리트의 압축 및 휨강도 발현 특성 (Compressive and Flexural Strength Development Characteristics of Polymer Concrete)

  • 김남길;연규석
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.101-110
    • /
    • 2018
  • This study experimentally investigated the compressive and flexyral strength development characteristics of polymer concrete using four different type polymeric resins such as unsaturated polyester, vinyl ester, epoxy, and PMMA (polymethyl methacrylate) as binders. The test results show that the average compressive strength of those four different polymer concretes was 88.70 MPa, the average flexural strength was 20.30 MPa. Those test results show that compressive and flexural strengths of polymer concrete were much stronger than compressive and flexural strengths of ordinary Portland cement concrete. In addition, the relative gains of the compressive strength development at the age of 24 hrs compared to the age of 168 hrs were 68.6~88.3 %. Also, the relative gains of the flexural strength development at the age of 24 hrs compared to the age of 168 hrs were 73.8~93.4 %. These test results show that compressive and flexural strengths of each polymer concrete tested in this study were developed at the early age. Moreover, the prediction equations of compressive and flexural strength developments regarding the age were determined. The determined prediction equations could be applied to forecast the compressive and flexural strength developments of polymer concrete investigated in this study because those prediction equations have the high coefficients of correlation. Last, the relations between the compressive strength and the flexural strength of polymer concrete were determined and the flexural/compressive strength ratios were from 1/4 to 1/5. These results show that polymer concretes investigated in this study were appropriate as a flexural member of a concrete structure because the flexural/compressive strength ratios of polymer concrete were much higher than the flexural/compressive strength ratios of Portland cement concrete.