• Title/Summary/Keyword: Polymeric Composite

Search Result 292, Processing Time 0.034 seconds

The effects of microparticles on the crack propagation (균열 진전에 대한 미세 입자의 영향)

  • 정보영;박성도;윤영기;윤희석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1495-1498
    • /
    • 2003
  • Recently, self-healing methods of a cracked matrix, especially polymeric composite materials, became the center of engineering researchers. In this paper, we summarized the self-healing concept for polymeric composite materials and investigated the effect of microparticle on the crack growth behavior in colorless and transparent matrix by experimental observation to describe the crack propagation around the microparticle inside epoxy matrix composite. Compression splitting test for the specimen involving microparticle was conducted. In addition, FE analysis was pursued to present the stress contour around microparticle in the matrix. Through the experiments and FE analysis, we found that the size. relative position, bonding condition and relative stiffness of microparticle are important parameters to decide the direction of crack propagation, which is related to the rupture of microparticle for self-healing

  • PDF

An Experimental Study on the Strength of Two Serial Bolt-Fastened Composite Joints under Elevated Temperature and Humid Condition (고온다습 조건($82.2^{\circ}C$)에서 2열 볼트 체결 복합재 조인트의 강도에 관한 실험적 연구)

  • Kim, Hyo-Jin
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.30-36
    • /
    • 2009
  • The failure strengths and modes in carbon fiber reinforced polymeric composites, with two serial bolt-fastened composite joints, were investigated to evaluate the typical joint configurations of composite components. The parametric studies were performed experimentally at room temperature dry and elevated temperature wet, $82.2^{\circ}C$ on several different laminate configurations. Based on the experimental data presented, two basic load-displacements curves are observed. Each failure mode has the characteristic curve. It is showed that the bearing failure mode occurs in elevated temperature wet condition. It is analysed that the strength of bearing failure mode is not highly depending on the effective modulus of specimen. The failure strength at elevated temperature wet is decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

Effect of Ionizing Radiation on Mechanical and Electric Properties of Polymer Composites Based on Polyvinyl ether of Ethyleneglycol

  • Mun G. A.;Nurkeeva Z. S.;Kovtunets V. A.;Kupchishin A. I.;Akhmetkalieva G. T.;Khutoryanskiy V. V.;Al-Sayed A. A.;Soh Dea-Wha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.25-28
    • /
    • 2003
  • Radiation technology is an effective way for regulating polymeric materials to physicochemical and mechanical properties. New polymeric hydrogels based on vinyl ethers have been synthesized by the $\gamma$-initiated polymerization method. In this paper, we have studied the effect of radiation on mechanical and electrochemical properties of new rubber-like polymeric composite materials based on polyvinylether of ethyleneglycol (PVEEG).

Recyclable Polymeric Composite with High Thermal Conductivity (재활용 가능한 고방열 고분자 복합소재 개발)

  • Shin, Haeun;Kim, Chae Bin;Ahn, Seokhoon;Kim, Doohun;Lim, Jong Kuk;Goh, Munju
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.319-326
    • /
    • 2019
  • To address tremendous needs for developing efficiently heat dissipating material with lightweights, a new class of polymer possessing recyclable and malleable characteristics was synthesized for incorporating model functional hexagonal boron nitride (h-BN) filler. A good interfacial affinity between the polymer matrix and the filler along with shear force generated upon manufacturing the composite yielded the final product bearing highly aligned filler via simple hot pressing method. For this reason, the composite exhibited a high thermal conductivity of 13.8 W/mK. Moreover, it was possible to recover the h-BN from the composite without physical/chemical denaturation of the filler by chemically depolymerizing the matrix, thus the recovered filler can be re-used in the future. We believe this polymer could be beneficial as matrix for incorporating many other functional fillers, thus they may find applications in various polymeric composite related fields.

Structural Behavior of Flexurally Reinforced FRP-Concrete Composite Compression Member with FRP (FRP로 휨보강된 FRP-콘크리트 합성압축재의 구조적 거동)

  • Park, Joon-Seok;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.10-16
    • /
    • 2010
  • In construction industries, new construction materials are needed to overcome some problems associated with the use of conventional construction materials due to the change of environmental and social requirements. Accordingly, the requirements to be satisfied in the design of civil engineering structures are diversified. As a new construction material in the civil engineering industries, fiber reinforced polymeric plastic (FRP) has a superior corrosion resistance, high specific strength/stiffness, etc. Therefore, such properties can be used to mitigate the problems associated with the use of conventional construction materials. Nowadays, new types of bridge piers and marine piles are being studied for new construction. They are usually made of concrete filled fiber reinforced polymeric plastic tubes (CFFT). In this paper, a new type of FRP-concrete composite pile which is composed of reinforced concrete filled FRP tube (RCFFT) is proposed to improve compressive strength as well as flexural strength. The load carrying capacity of proposed RCFFT compression member is discussed based on the result of experimental and analytical investigations.

  • PDF

Effects of Sheet Thickness on the Electromagnetic Wave Absorbing Characterization of Li0.375Ni0.375Zn0.25-Ferrite Composite as a Radiation Absorbent Material

  • Kim, Dong-Young;Yoon, Young-Ho;Jo, Kwan-Jun;Jung, Gil-Bong;An, Chong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.150-158
    • /
    • 2016
  • This paper reports on a study of LiNiZn-ferrite composite as a radiation absorbent material (RAM). The electromagnetic (EM) wave absorbers are composed of an EM wave absorbing material and a polymeric binder. The surface morphology, chemical composition, weight percent of the ferrite composite of the toroid sample, magnetic properties, and return loss are investigated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and network analyzer. For preparing the absorbing sheet, chlorinated polyethylene (CPE) is used as a polymeric binder. The EM wave absorption properties of the prepared samples were studied at 4 - 8 GHz. We can confirm the effects of the thickness of the samples for absorption properties. An absorption bandwidth of more than a 10-dB return loss shifts toward a lower frequency range along with an increase in the thickness of the absorber.