• Title/Summary/Keyword: Polymer-supported catalyst

Search Result 44, Processing Time 0.027 seconds

Polymer Supported Cyanide as an Efficient Catalyst in Benzoin Condensation: An Efficient Route to α-Hydroxy Carbonyl Compounds

  • Kiasat, Ali Reza;Badri, Rashid;Sayyahi, Soheil
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1164-1166
    • /
    • 2009
  • Aromatic aldehydes are efficiently self-condensed into $\alpha$-hydroxy carbonyl compounds by polystyrene-supported ammonium cyanide as an excellent organocatalyst in C-C bond formation. The reaction proceeds in water under mild reaction conditions. The polymeric catalyst can be easily separated by filtration and reused several times without appreciable loss of activity.

Polymer-supported Zinc Tetrahalide Catalysts for the Coupling Reactions of CO2 and Epoxides

  • Lee, Bo-Ra;Ko, Nan-Hee;Ahn, Byoung-Sung;Cheong, Min-Serk;Kim, Hoon-Sik;Lee, Je-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2025-2028
    • /
    • 2007
  • Homogeneous zinc tetrahalide complexes, highly active catalysts for the coupling reactions of alkylene oxide and CO2 produce alkylene carbonates, were heterogenized due to their tendency to decompose produced alkylene carbonates during the distillation process. Heterogenization of homogeneous zinc tetrahalide complexes was achieved by polymerizing 1-alkyl-3-vinylimidazolium zinc tetrahalides. These polymerized zinc tetrahalide catalysts displayed similar activities to their corresponding monomeric analogues for the coupling reactions of carbon dioxide with ethylene oxide (EO) or propylene oxide (PO) to produce ethylene carbonate (EC) or propylene carbonate (PC). TGA studies showed that the polymer-supported zinc tetrahalide catalysts are thermally stable up to 320 oC. The catalyst recycle test showed that the supported catalysts could be reused over six times. After removal of the polymer-supported catalyst through a simple filtration, EC was able to be isolated without decomposition.

Synthesis, Characterization and Application of Poly(4-vinylpyridine)-Supported Brønsted Acid as Reusable Catalyst for Acetylation Reaction

  • Borah, Kalyan Jyoti;Dutta, Papia;Borah, Ruli
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.225-228
    • /
    • 2011
  • Poly(4-vinylpyridine)-supported $Br{\phi}nsted$ acids (P4VP-HX) were prepared by wet impregnation technique. These supported acids were found as efficient heterogeneous green catalysts for acetylation of alcohol, amine and phenol with different catalytic activities. The wide application of P4VP-HX as reusable solid acid catalyst in organic reactions is possible because of its simple preparation and handling, stability, simple work up procedure.

The Application of Perfluorinated Cation-exchange Membrane in the Catalytic Process (촉매공정에서 양이온 교환 분리막의 응용)

  • 변홍식
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 1992
  • Functionalized organic polymers have been used as supports for heterogenized homogeneous catalytic process[1]. Sprcific advantages of using these resins as support reagents have been reviewed[2-4]. These include: -ease of by-product separation from the main reaction product usuallyby simple filtration. -prevention of intermolecular reaction of reactive species or functional groups by simulating high dilution conditions[5]. -utility of the "fish-hook" principle in which a minor component in fished out of a large excess substrate by the insoluble polymer[6]. -the possibility of reusing recovered reagents as well as eliminating the use of volatile or noxious substances[7]. Catalysis by ion-exchange membranes is perhaps one of the latest examples of the use of a polymer-supported species. Conceptually, catalysts on membrane supports offer several possible advantages over traditional powder type systems. They are: (1) Membranes immobilize the catalyst, preventing agglomeration. (2) Filtration is unnecessary for the catalyst separation and so complete catalyst recovery is facilitated. (3) Catalytyic and separation processes can be combined, allowing membrane supported catalysts for the continous flow reactors. reactors.

  • PDF

Ethylene Polymerization Using (n-BuCp)$_{2}ZrCl_{2}$ Catalyst Activated with a Cross-linked MAO-Supported Cocatalyst

  • Yoon, Keun-Byoung
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.336-341
    • /
    • 2004
  • A new type of cross-linked methylaluminoxane (MAO)-supported cocatalyst has been prepared by the reaction of a soluble MAO and a cross-liking agent such as an aromatic diamine compound. The cross-linked MAO-supported cocatalyst was used for the polymerization of ethylene in the presence of bis(n-butylcyclopentadienyl) zirconium dichloride, (n-BuCp)$_2$ZrCl$_2$. The catalyst activity of (n-BuCp)$_2$ZrCl$_2$ cocatalyzed with the new supported cocatalyst was higher than that of the commercial silica-supported MAO (SMAO) cocatalyst. The molecular weight and the bulk density of the polyethylene produced by using the new supported cocatalyst were slightly higher than those of polyethylene synthesized using commercial SMAO. The resulting polyethylene particles possess spherical morphologies with very few fine particles.

Preparation of electro-catalysts supported on the bimodal porous carbon for polymer electrolyte fuel cell (Bimodal 다공성 탄소지지체에 담지된 고분자전해질연료전지용 전극촉매 제조)

  • Hwang, So-hee;Park, Gu-Gon;Yim, Sung-Dae;Park, Seok-Hee;Kim, Han-Sung;Yang, Tae-Hyun;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.652-655
    • /
    • 2009
  • The bimodal porous carbons were synthesized by using imprinting method with templates of SBA-15 particle and silica sphere and applied as supporting materials for the electro-catalyst of polymer electrolyte fuel cell (PEFC). The silica spheres with diameter size of 100 nm and SBA-15 particle having 200 nm -250 nm diameter and 700 nm -900 nm length were synthesized in this work. The bimodal porous carbons (S100) were prepared by using the silica spheres and SBA-15 as templates and mesophase pitch as a carbon source. The PtRu nanoparticle of ca. 1.9 nm were supported on the bimodal porous carbon support and the resulting PtRu/S100 catalysts was tested by the cyclic voltammetry. The use of bimodal porous carbon showed in comparable electro-catalytic activities with commercial catalyst. Though unclear effects of bimodal porosity of supports could be obtained in the scope of this study, morphological advantage in electrical conductivity can be considered on the electro-catalytic activity.

  • PDF

Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell (다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성)

  • Jung, Dong-Won;Park, Soon;Ahn, Chi-Yeong;Choi, Seong-Ho;Kim, Jun-Bom
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.667-673
    • /
    • 2009
  • The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.