• Title/Summary/Keyword: Polymer-modified

Search Result 1,095, Processing Time 0.035 seconds

Properties of Strength of Ultrarapid-Hardening Polymer-Modified Mortar (초속경 폴리머 시멘트 모르타르의 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki;Yeon, Kyu-Seok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.115-118
    • /
    • 2001
  • The effects of polymer-cement ratio and shrinkage-reducing agent content on the strength properties of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

The Effect of Curing condition on Adhesion in Tension of Polymer-Modified Mortars (양생존건이 폴리머 시멘트 모르터의 접착강도에 미치는 영향)

  • 전우성;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.349-356
    • /
    • 1997
  • The purpose of this study is to evaluate the effect of curing conditions on adhesion in tension of polymer-modified mortar to cement mortar substrate in comparision with ordinary cement mortar. The polymer-modifies mortars using two polymer dispersions and a redispersible polymer power are prepared with various polymer-cement ratios, and tested for the adhesion in tension of the specimens subjected to five curing conditions. From the test results, the adhesion in tension of polymer-modified mortars tends to increase with increasing polymer-cement ratio irrespective of the polymer types and curing conditions. It is apparent that adhesion in tension of polymer-modified mortars is considerably influenced by curing conditions.

  • PDF

Properties of Polymer-Modified Paste with Ceramic Powder (세라믹 분말 혼입 폴리머 시멘트 페이스트의 특성)

  • Joo Myung Ki;Lee Youn Su;Han Youn Hwan;Han Jung Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.529-532
    • /
    • 2005
  • The effects of polymer-binder ratio and ceramic powder content on the drying shringage and strength of polymer-modified pastes using redispersible polymer powders and ceramic powder are examined. As a result, the drying shrinkage of the polymer-modified pastes using redispersible polymer powders tend to decrease with increasing polymer-binder ratio and ceramic powder content. Regardless of the type of polymer powder, the tensile strength and adhesion in tension of the polymer-modified pastes with ceramic powder tend to increase with increasing polymer-binder ratio and ceramic powder content.

  • PDF

Tension Stiffening Effects of MMA-Modified Polymer Concrete (MMA 개질 폴리머 콘크리트의 인장증강 효과)

  • Yeon Kyu Seok;Kweon Taek Jeong;Jeong jung Ho;Jin Xing Qi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.304-307
    • /
    • 2004
  • Direct tensile tests were carried out for the tensile members of MMA-modified polymer concrete with different steel kinds and steel diameters and steel ratios to figure out the effect of tensile strength of polymer concrete. In the experiments, MMA-modified polymer concrete with $1000\;kgf/cm^2$ of compressive strength, steel with $5200\;kgf/cm^2$ of tensile strength, and the tensile members with 100 cm of constant length were used. Experimental results showed that, regardless of steel kinds, diameters and steel content, the strain energy exerted by concrete till the initial crack was $14-15\%$ of the total energy till the point of yield: The energy was much larger than the one of high-strength cement concrete. The behaviors of tensile members of MMA-modified polymer concrete were in relatively good agreement with the model suggested by Gupta-Maestrini (1990), which was idealized by the effective tensile stress-strain relationship of concrete and the load-strain relationship of members, while those showed a big difference from CEB-FIP model and ACI-224 equation suggested for the load-displacement relationship that was defined as the cross sectional stiffness of effective axis. Modified ACI-224 model code about the load-displacement relationship for the tensile members of MMA-modified polymer concrete and theoretical equation for the polymer concrete tensile stiffness of polymer concrete suggested through the results of this study are expected to be used in an accurate structural analysis and resign for the polymer concrete structural members.

  • PDF

Evaluation for Performance According to Curing Method of Polymer- Modified Mortars (폴리머 시멘트 모르타르의 양생방법에 따른 물성 평가)

  • Park, Hun-Il;Ryu, Byung-Cheoll;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.273-276
    • /
    • 2005
  • Polymer-modified mortar was developed for improving the performance of modified mortar which is mixed with polymer, and it is used for protecting and repairing materials of building because of their excellent performance to improve characteristics which are compressive strength, flexural strength, and adhesive strength. However, the performances of the polymer-modified mortars are highly affected by materials, which are polymer, mortar, and aggregates, and conditions which are curing environment and testing method. Furthermore, dry curing method after hydrated curing has been recommended to make strong polymer film for the best curing method to make excellent characteristics. In this report, We investigated the co-relation between curing methods and the characteristics, which are compressive strength, flexural strength, and adhesive strength for the polymer-modified mortars that are used in the domestic area.

  • PDF

Drying Shrinkage and Strength Properties of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 초속경 폴리머시멘트 모르타르의 건조수축 및 강도특성)

  • Lee, Youn-Su;Joo, Myung-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.409-416
    • /
    • 2003
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

Burn-up Characteristics of Polymer-Modified Cement Mortar Used for Building Repair (고온시에서의 폴리머 시멘트 모르타르의 연소특성에 관한 연구)

  • Kim, Hyung-Jun;Noguchi, Takahumi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.295-298
    • /
    • 2012
  • Repair and strengthening is necessary to extend the service life of existing buildings. Polymer-modified cement mortar (PCM) has been extensively used as a high performance material particularly for finishing and repairing works in concrete building because of itsexcellent adhesion, waterproofing, resistance to chemical attack, and workability. As PCM contains organic polymer, it is necessary to clarify its properties at high temperature under fire, on which sufficient data are not available. This paper evaluated the burn-up characteristics of polymer-modified cement mortar with cone calorimeter test, non-combustibility test and flammability test with experimental parameters such as the types of polymer, unit-polymer content, polymer-cement ratio and thickness of the specimen.

  • PDF

Bond Strength and Tensile Strength of Polymer-Modified Mortar Using Styrene and Butyl Acrylate (St/BA를 혼입한 폴리머 시멘트 모르타르의 부착강도 및 인장강도 특성)

  • You, Kipyo;Hyung, Wongil
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.820-826
    • /
    • 2014
  • The objective of this study is to find the relationship between the tensile strength of the polymer film and the bond strength and tensile strength of the polymer-modified mortar using styrene (St) and butyl acrylate (BA), and porosity. In the test results, the bond strength and tensile strength of the polymer-modified mortar increased with increases in the tensile strength of polymer film and the fine pore volume.

Drying Shrinkage and Strength Properties of High-Fluidity Polymer-Modified Mortar (고유동 폴리머시멘트모르타르의 건조수축 및 강도 특성)

  • Joo Myung-Ki;Lee Youn-Su;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.651-657
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the air content, setting time, drying shrinkage and strength of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the air content of the polymer-modified mortars using redispersible polymer powder tends to decrease nth increasing polymer-cement ratio and antifoamer content. Regardless of the antifoamer content, the setting time of the polymer-modified mortars using redispersible polymer powder tends to delayed with increasing polymer-cement ratio. Irrespective of the antifoamer content, the drying shrinkage of the polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. Regardless of the antifoamer content, the flexural and tensile strengths of the polymer-modified mortars using redispersible polymer powder tends to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the polymer-modified mortars using redispersible polymer powder decreases with increasing polymer-cement ratio and shrinkage-reducing agent content.

Assessment of roof waterproofing by pre-packaged polymer modified slurry (PPPMS) and bitumen

  • Iqbal, Safdar;Jehan, Beenish;Khan, Fasih Ahmed;Khan, Haris;Khan, Sarmad Ali
    • Advances in environmental research
    • /
    • v.8 no.1
    • /
    • pp.71-84
    • /
    • 2019
  • Effective waterproofing of structures was a compulsory constraint to avoid leaks and dampness or humidity in walls, ceilings, roofs underground tank and underground room. Traditionally used methods of roof waterproofing were bitumen with tinny seared clay tiles are very troublesome, overwhelming time and involving high labor cost. These waterproofing methods are not allocation the purpose due to their intrinsic disadvantages. Prepackaged polymer modified slurries (PPPMS) are now attainment the vogue and easy to use, easily available in the market, cheaper in cost and more workable than the traditional methods of waterproofing. An experimental study has shown that prepackaged polymer modified slurries (PPPMS) are superior in cost and performance to as a roof water proof coatings. Bituminous coatings were mixed with water and different combination of prepackaged polymer modified slurries and primer respectively, to find optimum coverage underneath worst atmospheric conditions. Every specimen of different proportioned was applied on plane roofs and through the passage of time, their performance was checked, assessed and associated with each other. The roof of approximately 40000 ft2 area of prepackaged polymer modified slurries was used will give us hundred percent result (no water seepage or no water absorption) therefore no complaints as compare to roofs area of approximately 24000 ft2 bituminous coating was used for waterproofing they have shown the result of 30 to 40 percent water seepage. This result shows that prepackaged polymer modified slurries were two times cheaper than bituminous coating. Comparing an equal number of surfaces coated with a polymer modified prepackaged mortar and bitumen the prepackaged polymer modified slurries (PPPMS) showed excellent performance, ease of application and low bitumen coating cost.