• 제목/요약/키워드: Polymer stabilizer

검색결과 83건 처리시간 0.022초

Polymerization of Methyl Methacrylate in Carbon Dioxide Using Glycidyl Methacrylate Linked Reactive Stabilizer: Effect of Pressure, Reaction Time, and Mixing

  • Han, Sang-Hun;Park, Kyung-Kyu;Lee, Sang-Ho
    • Macromolecular Research
    • /
    • 제17권1호
    • /
    • pp.51-57
    • /
    • 2009
  • Using glycidyl methacrylate-linked poly(dimethylsiloxane), methyl methacrylate was polymerized in supercritical $CO_2$. The effects of $CO_2$ pressure, reaction time, and mixing on the yield, molecular weight, and molecular weight distribution (MWD) of the poly(methyl methacrylate) (PMMA) products were investigated. The shape, number average particle diameter, and particle size distribution (PSD) of the PMMA were characterized. Between 69 and 483 bar, the yield and molar mass of the PMMA products showed a trend of increasing with increasing $CO_2$ pressure. However, the yield leveled off at around 345 bar and the particle diameter of the PMMA increased until the pressure reached 345 bar and decreased thereafter. With increasing pressure, MWD became more uniform while PSD was unaffected. As the reaction time was extended at 207 bar, the particle diameter of PMMA decreased at $0.48{\pm}0.03%$ AIBN, but increased at 0.25% AIBN. Mixing the reactant mixture increased the PMMA yield by 18.6% and 9.3% at 138 and 207 bar, respectively.

Color Stabilization of Low Toxic Antimicrobial Polypropylene/Poly(hexamethylene guanidine) Phosphate Blends by Taguchi Technique

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • 제17권6호
    • /
    • pp.411-416
    • /
    • 2009
  • The color stabilization of antimicrobial blends was studied by using poly(hexamethylene guanidine) phosphate (PHMG) as a highly efficient biocidal and nontoxic agent. The Taguchi method was used to determine the optimum conditions for the blending of PHMG in polypropylene (PP) matrix. To improve the yellowing phenomena, two kinds of stabilizer were used together: tetrakis[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)](IN1010) from phenol and tris(2,4-di-t-butylphenylphosphite) (IF168) from phosphorus. According to blend composition and mixing condition, six factors were chosen, with five levels being set for each factor. The orthogonal array was selected as the most suitable for fabricating the experimental design, L25, with 6 columns and 25 variations. The-smaller-the-better was used as an optimization criterion. The optimum conditions for these parameters were 10 phr for PHMG, 2 phr for IN1010, 1 phr for IF168, 10 min for mixing time, $210^{\circ}C$ for mixing temperature, and 30 rpm for rotation speed. Under these conditions, the yellowness index of the blend was 1.52. The processibility of the blends was investigated by Advanced Rheometric Expansion System (ARES). The blend with 0.5 w% PHMG content, diluted with PP, exhibited an antimicrobial characteristic in the shake flask method.

NaBH4를 이용한 수소발생반응의 촉매에 관한 연구 (A Study on the Catalysts for Hydrogen Generation Reaction Using NaBH4 Solution)

  • 정성욱;조은애;오인환;홍성안;김성현;서용교
    • 한국수소및신에너지학회논문집
    • /
    • 제14권2호
    • /
    • pp.114-121
    • /
    • 2003
  • Hydrogen generation system using aqueous $NaBH_4$ solution was developed for feeding small polymer electrolyte membrane fuel cells (PEMFCs). Ru was selected as a catalyst with its high activity for the hydrogen generation reaction. Hydrogen generation rate was measured with changing the solution temperature, amount of catalyst loading, $NaBH_4$ concentration, and NaOH (a base-stabilizer) concentration. A passive air-breathing 2 W PEMFC stack was operated on hydrogen generated using $20wt%\;NaBH_4+5wt%$ NaOH solution and Ru catalyst.

오메프라졸 구강점막 부착정제에 관한 연구 (Oral Mucosal Adhesive Tablets of Omeprazole)

  • 정재희;최한곤;박선주;유제만;윤성준
    • Journal of Pharmaceutical Investigation
    • /
    • 제27권2호
    • /
    • pp.133-137
    • /
    • 1997
  • Buccal absorption test of omeprazole in human was performed to determine the permeability of the drug molecule through oral mucous membrane. Oral mucosal adhesive tablets of omeprazole were prepared by compressing the omeprazole with a mixture of sodium alginate and hydroxypropylmethyl cellulose (HPMC) as bioadhesive polymers, magnesium oxide (MgO) as a stabilizer and sodium carboxymethyl cellulose (Na CMC) or cros-carmellose sodium (Ac-Di-Sol) as disintegrants. The bioadhesive force, stability in saliva and release characteristics of the tablets were evaluated. Omeprazole was absorbed about 23% in 15 min through human buccal mucous membrane. Furthermore, omeprazole was stable in saliva for more than 8 hrs when MgO was added to the tablet as the amount of 2.5 fold of omeprazole. The release rate of omeprazole was increased with increasing the amount of sodium alginate in the tablet. From these results, it is suggested that tablets composed of [omeprazole/HPMC/sodium alginate/MgO/Ac-Di-Sol and/or Na CMC (20/6/24/50/10) (mg/tablet)] are potential candidate for buccal drug delivery system.

  • PDF

In-Situ Synthesis of PS/(-)Silica Composite Particles in Dispersion Polymerization Using An ($\pm$) Amphoteric Initiator

  • Hwang, Deok-Ryul;Hong, Jin-Ho;Lee, Jeong-Woo;Shim, Sang-Eun
    • Macromolecular Research
    • /
    • 제16권4호
    • /
    • pp.329-336
    • /
    • 2008
  • Core/shell ($\pm$)PS/(-)silica nanocomposite particles were synthesized by dispersion polymerization using an amphoteric initiator, 2,2'-azobis [N-(2-carboxyethyl)-2,2-methylpropionamidine] ($HOOC(CH_2)_2HN$(HN=) $C(CH_3)_2CN$=NC $(CH_3)_2C$(=NH)NH $(CH_2)_2COOH$), VA-057. Negatively charged (-6.9 mV) silica was used as the stabilizer. The effects of silica addition time and silica and initiator concentrations were investigated in terms of polymerization kinetics, ultimate particle morphology, and size/size distribution. Uniform hybrid microspheres with a well-defined, core-shell structure were obtained at the following conditions: silica content = 10-15 wt% to styrene, VA-057 content=above 2 wt% to styrene and silica addition time=0 min after initiation. The delay in silica addition time retarded the polymerization kinetics and broadened the particle size distribution. The rate of polymerization was strongly affected by the silica content: it increased up to 15 wt% silica but then decreased with further increase in silica content. However, the particle size was only marginally influenced by the silica content. The zeta potential of the composite particles slightly decreased with increasing silica content. With increasing VA-057 concentration, the PS microspheres were entirely coated with silica sol above 1.0 wt% initiator.

Y존 케어 하이드로젤솔루션의 제조 및 생물학적 특성 평가 (Evaluation of Manufacturing and Biological Properties of Y Zone Care Hydrogel Solution)

  • 김은지;김인경
    • 미래기술융합논문지
    • /
    • 제3권2호
    • /
    • pp.25-31
    • /
    • 2024
  • 최근 정보통신 기술로 인해 산업화되고 발달됨에 있어, 현대사회의 현대 여성들은 수많은 스트레스로 육체적, 정신적 건강에 노출되어 있다. 대중적으로 발생하는 염증들은 유산균이 감소되거나 잦은 항생제 복용 및 면역력 저하의 원인이 대표적이다. 도움이 되며 반영되는 제품 개발이 필요하다. 현재 시중에 소개되고 있는 이너케어젤은 유익균을 증가시키고 건강한 y존을 유지할수 있다. 이너 젤 속에는 하이드로젤 성분이 함유되어있다. 90%가 물로 이루어져 있고 그 외에 성분은 물을 지지하는 지지체로서의 역할을 수행하며, 고분자 사슬간의 가교결합을 통해 형성된다. HEC(hydroxyethyl cellulose)는 셀룰로오스의 하이드록시에칠에 텔이다. 사용목적은 결합제, 유화안정제, 점도증가제(수성), 피막형성제 역할을 한다. CA (crosslinker)는 가교제이며, 결합시켜주는 역할을 한다. 미용분야의 하이드로젤은 얇은 피막형성으로 피부를 부드럽게 감싸주는 피막형성제 역할을 하고, 다른 원료들이 분리되지 않도록 도움을 주는 유화안정제 역할을 한다. 또한, 화장품에 점성을 높여 점도를 개선시키는 점증제 역할을 한다. 또한, 바이오 분야에서는 포도당 감시, 간호관리, 세포이식 및 상처 치료에도 사용되어지고 있다. 현재로서는 기능성 하이드로젤을 이용한 제품은 나오지 않은 것으로 파악되어 있어 본 연구에서는 기능성 하이드로젤 항균성을 알아보기 위해 Y존 케어 하이드로젤 솔루션 제조를 수행하였으며 새로운 솔루션 개발을 목적으로 한다. 결과적으로 Y존에 적절한 Ph를 맞추었음을 확인하였고, PDB배지에 칸디다 알비칸균 배양 후 Y존 케어 하이드로젤솔루션 세가지 제품 모두 0.5~1.0mm의 항균력 효과를 보았다.

스티렌/노말 부틸 메타크릴레이트와 알루미나의 분산 공중합에서 중합인자에 따른 입경변화 연구 (A Study on Particle Size with Polymerization Factor in Dispersion Copolymerization of Styrene/n-Butylmethacrylate and Alumina)

  • 방현수;조을룡
    • Elastomers and Composites
    • /
    • 제43권4호
    • /
    • pp.230-240
    • /
    • 2008
  • 분산중합법에 의해 무기물을 포함하는 고분자 미립자를 합성하기 위해 styrene과 n-butyl methacrylate가 알루미나와 함께 중합되었다. Styrene과 n-butylmethacrylate의 무게 비는 3:1이었고, 입자안정제는 poly(N-vinyl pyrrolidon), 중합 개시제로는 2,2'-azobis(isobutyronitrile)를 사용하여 개시제의 농도, 분산매의 종류, 분산매의 혼합 용해도 상수 (${\delta}_{mix}$), 커플링제의 종류와 농도에 따른 입자경을 조사하였다. 개시제의 농도가 증가함에 따라 입자경이 소폭 상승하였고 분산매의 극성이 증가할수록 입경이 증가하였고, 분산매로서, 이소프로판올과 이온교환수를 조성비에 따라 사용한 경우, $[{\delta}_{mix}]^{-4.01}\;{\propto}$ 평균 입자경과 $[{\delta]_{mix}]^{-0.83}\;{\propto}$ 입경 분포의 관계를 얻을 수 있었다. 커플링제의 종류와 농도변화에 따른 입자경 및 입자경 분포는 뚜렷한 차이가 없었다.

Stability, Efficacy, Absorption and Toxicity of a New Nasal Spray Formulation including Salmon Calcitonin

  • Shim, Hyun-Joo;Kim, Mi-Kyung;Bae, En-Joo;Lee, Eung-Doo;Hyun Jo;Kim, Soon-Hae;Kwon, Jong-Won;Kim, Won-Bae
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.137-137
    • /
    • 1998
  • Stability, efficacy, absorption and toxicity of a new nasal spray formulation including salmon calcitonin were studied in the laboratory animals. After the effects of many excipients on the stability of salmon calcitonin were evaluated using HPLC system, we selected taurine. Our experimental composition of salmon calcitonin contains taurine as a stabilizer and HPMC (hydroxypropylmethyl cellulose) as an adhesive polymer. After intranasal administration of salmon calcitonin formulations, Mia$\^$(R)/, Men$\^$(R)/ and experimental composition, 22 IU to rats, the reduction percentages of calcium concentration in plasma (ΔD%) were 16.3%, 12.9% and 20.8%, respectively. After intranasal administration of Mia$\^$(R)/, Men$\^$(R)/ and experimental composition to rats, C$\sub$MAX/ (205${\pm}$161, 244${\pm}$117, and 330${\pm}$202 pg/$m\ell$, respectively) and AUC (41585${\pm}$22070, 41191${\pm}$19125, and 63357${\pm}$43126 pg. min/$m\ell$, respectively) were calculated. The permeation coefficients 10$\^$-7/,cm/sec) of salmon calcitonin in Mia$\^$(R)/, Men$\^$(R)/ and experimental composition using Ussing chamber with rabbit nasal mucosa were 4.7${\pm}$1.5, 0.75${\pm}$0.4 and 5.3${\pm}$1.1, respectively. The experimental composition with taurine and HPMC was proved to be excellent because it improved the stability of salmon calcitonin and inhanced the absorption of salmon calcitonin and was not irritative to the nasal mucosa.

  • PDF

Fe-Mn 입자의 안정화를 통한 인산염 효율 향상 (Enhancement of phosphate removal using stabilized Fe-Mn particle)

  • 강서연;신정우;안병렬
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.375-382
    • /
    • 2023
  • The binary oxide adsorbent using Fe and Mn (Fe-Mn) has been prepared by precipitation method to enhance the removal of phosphate. Different amounts of chitosan, a natural organic polymer, were used during preparation of Fe-Mn as a stabilizer to protect an aggregation of Fe-Mn particles. The optimal amount of chitosan has been determined considering the separation of the Fe-Mn particles by gravity from solution and highest removal efficiency of phosphate (Fe-Mn10). The application of Fe-Mn10 increased removal efficiency at least 15% compared to bare Fe-Mn. According to the Langmuir isotherm model, the maximum uptake (qm) and affinity coefficient (b) were calculated to be 184 and 240 mg/g, and 4.28 and 7.30 L/mg for Fe-Mn and Fe-Mn10, respectively, indicating 30% and 70% increase. The effect of pH showed that the removal efficiency of phosphate was decrease with increase of pH regardless of type of adsorbent. The enhanced removal efficiency for Fe-Mn10 was maintained in entire range of pH. In the kinetics, both adsorbents obtained 70% removal efficiency within 5 min and 90% removal efficiency was achieved at 1 h. Pseudo second order (PSO) kinetic model showed higher correlation of determination (R2), suggesting chemisorption was the primary phosphate adsorption for both Fe-Mn and Fe-Mn10.

유화제로서 PEG-PPG 블록 공중합체를 이용한 Poly(DL-Lactide-co-Glycolide) 나노입자: 제조 및 지용성 약물의 로딩 (Poly(DL-Lactide-co-Glycolide) Nanoparticles Used PEG-PPG Diblock Copolymer by Surfactant: Preparation and Loading of Water Insoluble Drug)

  • 정택규;김승수;신병철
    • 대한화학회지
    • /
    • 제47권5호
    • /
    • pp.479-486
    • /
    • 2003
  • 본 연구에서는 나노입자의 제조 방법인 용매 확산 방법 (emulsification diffusion method)을 이용하여 poly (DL-lactide-co-glycolide) (PLGA) 나노입자를 제조하고 지용성 vitamin A (Retinol)와 Vitamin E acetate를 담지하였다. 고분자 용액은 물에 잘 혼합되는 유기 용매인 에탄올과 아세톤의 이종 혼합 용매를 사용하여 제조하였고 유화제는 생체적합성이 우수한 polyethyleneglycol-polypropyleneglycol diblock copolymer를 사용하였다. 고분자의 농도, 유화제의 농도, 물/오일상의 비, 고분자/약물의 비 등의 인자들이 나노입자의 형성과 약물의 담지 효율에 미치는 영향을 조사하였다. 활성 성분이 로딩된 나노입자를 제조한 후, 입자의 크기와 분포도는 광산란 입도 분석기를 이용하여 측정하였고 담지 효율은 UV-visible spectroscopy를 이용하여 평가하였다. 제조된 나노입자는 50-200 nm의 크기와 단분산 형태의 크기분포를 보였으며 담지 효율은 50-60%까지 얻을 수 있었다. 또한, 유기상과 수용액상에서 이종 혼합 용매와 고분자의 농도에 대한 적당한 조건을 조절함으로써 PLGA 나노입자의 높은 수율과 우수한 물리적 특성을 얻을 수 있었다.