• Title/Summary/Keyword: Polymer solar cells

Search Result 175, Processing Time 0.031 seconds

Effect of Self-Assembled Monolayer Treated ZnO on the Photovoltaic Properties of Inverted Polymer Solar Cells

  • Yoo, Seong Il;Do, Thu Trang;Ha, Ye Eun;Jo, Mi Young;Park, Juyun;Kang, Yong-Cheol;Kim, Joo Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.569-574
    • /
    • 2014
  • Inverted bulk hetero-junction polymer solar cells (iPSC) composed of P3HT/PC61BM blends on the ZnO modified with benzoic acid derivatives-based self-assembled monolayers (SAM) are fabricated. Compared with the device using the pristine ZnO, the devices with ZnO surface modified SAMs derived from benzoic acid such as 4-(diphenylamino)benzoic acid (DPA-BA) and 4-(9H-carbazol-9-yl)benzoic acid (Cz-BA) as an electron transporting layer show improved the performances. It is mainly attributed to the favorable interface dipole at the interface between ZnO and the active layer, the eective passivation of the ZnO surface traps, decrease of the work function and facilitating transport of electron from PCBM to ITO electrode. The power conversion eciency (PCE) of iPSCs based on DPA-BA and Cz-BA treated ZnO reaches 2.78 and 2.88%, respectively, while the PCE of the device based on untreated ZnO is 2.49%. The open circuit voltage values ($V_{oc}$) of the devices with bare ZnO and SAM treated ZnO are not much different. Whereas, higher the fill factor (FF) and lower the series resistance ($R_s$) are obtained in the devices with SAMs modification.

Review on Polymer Electrolyte Membranes for Dye-sensitized Solar Cells (염료감응 태양전지용 고분자 전해질막의 총설)

  • Lee, Jae Hun;Park, Cheol Hun;Lee, Chang Soo;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Dye-sensitized solar cells (DSSCs) have attracted great attention as sustainable energy devices. The efficiency and long-term stability of DSSCs are greatly influenced by electrode materials and electrolytes. In this review, we focused on the electrolytes of DSSCs. Polymer electrolyte membranes have been proposed as an alternative to conventional liquid electrolytes in DSSCs. Conventional liquid electrolytes can exhibit a high efficiency, but due to some problems such as poor long-term stability of device and leakage of liquid, much interest in polymer electrolyte membranes continues to rise and the papers on polymer electrolytes membranes have been extensively reported recently. This review covers the concept and development of polymer electrolyte membranes for DSSCs, and discusses the efficiency and electrochemical properties of DSSCs, highlighting the modification of polymer matrix, the introduction of additives such as organic-inorganic plasticizers and ionic liquids.

The Effect of PEDOT:PSS Thickness on the Characteristics of Organic-Inorganic Hybrid Solar Cells (PEDOT:PSS의 두께가 유무기 하이브리드 태양전지 성능에 미치는 영향)

  • Kim, Souk Yoon;Han, Joo Won;Oh, Joon-Ho;Kim, Yong Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.61-64
    • /
    • 2019
  • In this study, we investigate organic-inorganic hybrid solar cells with a very simple three-layer structure (Al/n-Si/PEDOT:PSS). The performance of hybrid solar cells is optimized by controlling the sheet resistance and optical transmittance of the PEDOT:PSS layers. As the thickness of the PEDOT:PSS layer decreases, the optical absorption of the n-Si increases, which greatly improves the short-circuit current density ($J_{SC}$) of devices, but the increase in sheet resistance leads to a decrease in the open-circuit voltage ($V_{OC}$) and the fill factor (FF). The solar cell with the 180-nm thick PEDOT:PSS layer shows a highest efficiency of 8.45% ($V_{OC}$: 0.435 V, $J_{SC}$: $33.7mA/cm^2$, FF: 57.5%). Considering these results, it is expected that the optimizing process for the sheet resistance and transmittance of the PEDOT:PSS layer is essential for producing high-efficiency organic-inorganic hybrid solar cells and will serve as an important basis for achieving low-cost, high-efficiency solar cells.

Improved Photovoltaic Performance of Inverted Polymer Solar Cells using Multi-functional Quantum-dots Monolayer

  • Moon, Byung Joon;Lee, Kyu Seung;Kim, Sang Jin;Shin, Dong Heon;Oh, Yelin;Lee, Sanghyun;Kim, Tae-Wook;Park, Min;Son, Dong Ick;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.1-400.1
    • /
    • 2016
  • Interfacial engineering approaches as an efficient strategy for improving the power conversion efficiencies (PCEs) of inverted polymer solar cells (iPSCs) has attracted considerable attention. Recently, polymer surface modifiers, such as poly(ethyleneimine) (PEI) and polyethylenimine ethoxylated (PEIE), were introduced to produce low WF electrodes and were reported to have good electron selectivity for inverted polymer solar cells (iPSCs) without an n-type metal oxide layer. To obtain more efficient solar cells, quantum dots (QDs) are used as effective sensitizers across a broad spectral range from visible to near IR. Additionally, they have the ability to efficiently generate multiple excitons from a single photon via a process called carrier multiplication (CM) or multiple exciton generation (MEG). However, in general, it is very difficult to prepare a bilayer structure with an organic layer and a QD interlayer through a solution process, because most solvents can dissolve and destroy the organic layer and QD interlayer. To present a more effective strategy for surpassing the limitations of traditional methods, we studied and fabricated the highly efficient iPSCs with mono-layered QDs as an effective multi-functional layer, to enhance the quantum yield caused by various effects of QDs monolayer. The mono-layered QDs play the multi-functional role as surface modifier, sub-photosensitizer and electron transport layer. Using this effective approach, we achieve the highest conversion efficiency of ~10.3% resulting from improved interfacial properties and efficient charge transfer, which is verified by various analysis tools.

  • PDF

Fabrication of CIGS/CZTS Thin Films Solar Cells by Non-vacuum Process (비진공 방법에 의한 CIGS/CZTS계 박막 태양전지 제조)

  • Yoo, Dayoung;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.748-757
    • /
    • 2018
  • Inorganic semiconductor compounds, e.g., CIGS and CZTS, are promising materials for thin film solar cells because of their high light absorption coefficient and stability. Research on thin film solar cells using this compound has made remarkable progress in the last two decades. Vacuum-based processes, e.g., co-evaporation and sputtering, are well established to obtain high-efficiency CIGS and/or CZTS thin film solar cells with over 20 % of power conversion. However, because the vacuum-based processes need high cost equipment, they pose technological barriers to producing low-cost and large area photovoltaic cells. Recently, non-vacuum based processes, for example the solution/nanoparticle precursor process, the electrodeposition method, or the polymer-capped precursors process, have been intensively studied to reduce capital expenditure. Lately, over 17 % of energy conversion efficiency has been reported by solution precursors methods in CIGS solar cells. This article reviews the status of non-vacuum techniques that are used to fabricate CIGS and CZTS thin films solar cells.

New Polymer Electrolytes for Solid State Dye-Sensitized Solar Cells (고분자 전해질을 이용한 고체형 염료감응 태양전지)

  • Kang, Yong-Soo;Lee, Yong-Gun;Kang, Moon-Sung;Kim, Jong-Hak;Char, Kook-Chen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.231-234
    • /
    • 2007
  • The solid state dye-sensitized saolrc cells (DSSCs) employing polymer electrolytes show high overall energy conversion efficiency as high as 4.5% at 1 sun conditions. The improved efficiency may be primarily due to the enlarged interfacial contact area between the electrolyte and dyes in addition to the increased ionic conductivity, which were done by utilizing liquid oligomers, followed by in situ self-solidification, to form the solid DSSCs "Oligomer Approach". The effect of the charge transfer resistance at the counter electrode side on the effciency has also been investigated.

  • PDF

Nanoscale Double Interfacial Layers for Improved Photovoltaic Effect of Polymer Solar Cells (이중 나노 계면층을 적용한 고효율 고분자 태양 전지 소자 연구)

  • Lee, Young-In;Park, Byoung-Choo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.70-75
    • /
    • 2011
  • We introduced nanoscale interfacial layers between the PV layer and the cathode in poly (3-hexylthiophene):methanofullerene bulk-heterojunction polymer photovoltaic (PV) cells. The nanoscale double interfacial layers were made of ultrathin poly (oxyethylenetridecylether) surfactant and low-work-function alloy-metal of Al:Li layers. It was found that the nanoscale interfacial layers increase the photovoltaic performance, i.e., increasing short-circuit current density and fill factor with improved device stability. For PV cells with the nanoscale double interfacial layers, an increase in power conversion efficiency of $4.18{\pm}0.24%$ was achieved, compared to that of the control devices ($3.89{\pm}0.08%$) without the double interfacial layers.

Synthesis and Characterization of New Poly(2,7-Carbazole) Derivative for Organic Solar Cells (유기 태양 전지 응용을 위한 새로운 카바졸계 고분자 합성 및 특성에 관한 연구)

  • Lee, Sang Kyu;Kim, Hee Joo;Park, Song Joo;Chae, Eun Ah;Cho, Jung Min;Moon, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.73.2-73.2
    • /
    • 2010
  • Polymer solar cells (PSCs) have attracted considerable academic and commercial interest because of their unique advantages, such as the facile manufacture of low cost, flexibility, lightweight, and solution processibility. Recently, high-performance polymer solar cells made from a mixture of poly(2,7-carbazole) derivatives, PCDTBT, and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) have been reported, with maximum power conversion efficiency of 6.1%. In this work, we report new novel copolymers based on poly(2,7-carbazole) derivatives with a suite of electron-deficient moieties or electron-rich units. We systematically investigated the synthesis, thermal stability, as well as the optical and electrochemical properties of these polymers. Detailed synthetic scheme, optical, electrochemical, and photovoltaic properties of the copolymers will be presented.

  • PDF

Bulk Heterojunction Organic Photovoltaics- Nano Morphology Control and Interfacial Layers

  • Kim, Gyeong-Gon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.59.2-59.2
    • /
    • 2012
  • Polymer solar cells utilize bulk heterojunction (BHJ) type photo-active layer in which the electron donating polymer and electron accepting $C_{60}$ derivatives are blended. We found there is significant charge recombination at the interface between the BHJ active layer and electrode. The charge recombination at the interface was effectively reduced by inserting wide band gap inorganic interfacial layer, which resulted in efficiency and stability enhancement of BHJ polymer solar cell.

  • PDF

Solid State Dye-Sensitized Solar Cells Employing Polymer Electrolytes : Oligomer Approach

  • Kang, Yong-Soo;Lee, Yong-Gun;Kang, Moon-Sung;Kim, Jong-Hak;Char, Kook-Choen
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.63-64
    • /
    • 2006
  • The solid state dye-sensitized solar cells (DSSCs) employing polymer electrolytes show high overall energy conversion efficiency as high as 4.5 % at 1 sun conditions. The improved efficiency may be primarily due to the enlarged interfacial contact area between the electrolyte and dyes in addition to the increased ionic conductivity, which were done by utilizing liquid oligomers, followed by in situ self-solidification, to form the solid DSSCs: "Oligomer Approach". The effect of the charge transfer resistance at the counter electrode side on the efficiency has also been investigated.

  • PDF