• Title/Summary/Keyword: Polymer nanocomposites

Search Result 372, Processing Time 0.033 seconds

Interfacial Interaction in Silica or Silsesquioxane Containing Polyimide Nanohybrids

  • Ha, Chang-Sik
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.204-204
    • /
    • 2006
  • The interfacial interaction along with microstructure and some properties of the polyimide(PI)/silica or polyimide/silsesquioxane hybrid nanocomposites will be discussed with reviewing recent publications including our own works. Poly(vinyl silsesquioxane) (PVSSQ), aminosilane (APS), and titania can effectively play vital roles to compatibilize the PI/silica hybrid composites by enhancing interfacial interaction or reducing agglomeration of large domains, which helps the formation of nanocomposites for the PI/silica hybrid system.

  • PDF

Preparation and Properties of Polystyrene/Graphene Nanofiller Nanocomposites via Latex Technology (라텍스 기법에 의한 폴리스티렌/그래핀 나노필러 나노복합재료의 제조 및 물성)

  • Yeom, Hyo Yeol;Na, Hyo Yeol;Chung, Dae-Won;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.468-474
    • /
    • 2015
  • Electrically conductive polymer nanocomposites were prepared by the inclusion of graphene-based nanofillers. Graphene oxide (GO) and reduced graphene oxide wrapped by poly(styrene sulfonate) (PSS-RGO) were used as nanofillers to make good dispersion with the aqueous dispersion of polystyrene (PS) particles. GO sheets were synthesized by the modified Hummers' method from graphite, and PSS-RGO sheets were prepared by the reduction of GO-dispersed PSS solution with hydrazine monohydrate. Morphology and properties of PS/GO and PS/PSS-RGO nanocomposites via latex technology were investigated. Both nanofillers showed well dispersed morphology in PS matrix. Rheological and electrical percolation thresholds were 0.28 and 0.51 wt% for GO, and 0.50 and 1.01 wt% for PSS-RGO respectively. It is speculated that PS/GO nanocomposites showed better conductivity than PS/PSS-RGO counterparts due to the partial recovery of GO by thermal reduction during molding.

Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials (Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질)

  • Kim, Seok;Hwang, Eun-Ju;Lee, Jea-Rock;Kim, Hyung-Il;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2007
  • In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

New Polymerization using Microwave Radiation

  • Lee, Jae-Heung;Kim, Yong-Seok;Hong, Young-Taik;Jung, Hyun-Min;Oh, Hyoung-Suk
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.213-213
    • /
    • 2006
  • High molecular weight of polycarbonate(PC) and well dispersed PC/MMT nanocomposites were successfully prepared through the novel technology, microwave solid-state polymerization. In our studies, the microwave irradiation is more effective than conventional oil-bath heating on achieving the high molecular weight and uniform nanocomposites. Using the polycarbonate prepolymer made it possible to intercalate the short chains into the galleries of MMT more easily. And it was observed that prepared nanocomposites by microwave solid-state polymerization have more uniform dispersion of silicate of MMT into the polymer matrix than by oil heating.

  • PDF

Preparation of Nylon 6/ Clay Nanocomposites by Reactive Extrusion

  • Soonho Lim;Park, Jung-Hoon;Kim, Woo-Nyeon;Lee, Sang-Soo;Kim, Junkyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.16-20
    • /
    • 2003
  • As the preliminary works for the preparation of exfoliated nanocomposites by reactive extrusion (REX) the modified anionic polymerization proceeded in a flask using an $\varepsilon$-caprolactam, catalyst, initiator, and clay. Polymerization methods were classified with a variation of the clay adding time. Intercalations mechanism of clay layers was investigated by measuring the WAXD peaks of clay with polymerization. In the preparation of nanocomposites, the molecular weight of nylon 6 was affected by the clay content. From the mechanical property measurement, improved properties were obtained in comparison to the neat nylon 6, and these properties were also affected by the molecular weight.

  • PDF

Basic Study on the Nonocomposites by using the MWNT(Multiwalled Nanotube) (MWNT를 이용한 나노복합체에 대한 기초적 연구)

  • Kang, Young-gu;Kweon, Hyunkyu;Choi, Seong-Dae;Noh, In-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.104-109
    • /
    • 2009
  • In this paper, polymer nanocomposites were fabricated by mixing fire-resistant and high pseudoplastic Nylon 6,6 with MWNT(Multiwalled Nanotube), which has mechanical, electrical, and heat stable properties. The experiments were performed in order to investigate their mechanical and electrical properties depending on the level of MWNT and the presence of acid treatment on Nylon 6.6. Morphology of polymer nanocomposites was observed using Scanning Electron Microscopy technique. The results indicate that the polymer nanocomposites have the best mechanical and electrical properties in the optimal conditions of Nylon 6.6 and MWNT(10wt%).

  • PDF

Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs

  • Lee, Hae-Hyoung;Shin, Ueon-Sang;Jin, Guang-Zhen;Kim, Hae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.157-161
    • /
    • 2011
  • For the fabrication of multifunctional biopolymer nanocomposites in the combination of carbon nanotubes (CNTs), recently increasing attention has been paid to an effective homogenization of CNTs within polymer matrices and a fine tuning of the concentration. We developed an efficient method to produce homogeneous CNT-polycaprolactone nanocomposites with various and controllable CNT concentrations using an ionically-modified multi-walled CNT, MWCNT-Cl. The modified MWCNTs could be homogeneously dispersed in tetrahydrofuran (THF). Polycaprolactone (PCL) as a biodegradable and biocompatible polymer was smoothly dissolved in the homogeneous MWCNT-Cl/THF solution without agglomeration of MWCNT-Cl. The physicochemical and mechanical properties of the resultant nanocomposites were examined and the biological usefulness was briefly assessed.

Effect of matrix viscosity on the melt exfoliation of clay in preparation of poly( $\varepsilon$ -caprolactone)/organoclay nanocomposites (poly( $\varepsilon$ -caprolactone)/organoclay 나노복합체에 있어 용융 박리에 수지 점도가 미치는 영향)

  • Ko, Moon-Bae;Park, Jee-kwon;Jho, Jae-Young;Jo, Won-Ho;Lee, Moo-Sung
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.440-443
    • /
    • 2001
  • Polymer/layered silicate nanocomposites have recently received considerable attention from both academia and industry as an effective way to overcome the shortcomings of conventional polymer. When the silicate layers are exfoliated and randomly distributed in polymer matrix, the nanocomposites exhibit improved mechanical, thermal and barrier properties. (omitted)

  • PDF