• Title/Summary/Keyword: Polymer nanocomposites

Search Result 371, Processing Time 0.027 seconds

Modeling of rheological behavior of nanocomposites by Brownian dynamics simulation

  • Song Young Seok;Youn Jae Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.201-212
    • /
    • 2004
  • Properties of polymer based nanocomposites depend on dispersion state of embedded fillers. In order to examine the effect of dispersion state on rheological properties, a new bi-mode FENE dumbbell model was proposed. The FENE dumbbell model includes two separate ensemble sets of dumbbells with different fric­tion coefficients, which simulate behavior of well dispersed and aggregated carbon nanotubes (CNTs). A new parameter indicating dispersion state of the CNT was proposed to account for degree of dispersion quantitatively as well as qualitatively. Rheological material functions in elongational, steady shear, and oscillatory shear flows were obtained numerically. The CNT/epoxy nanocomposites with different dis­persion state were prepared depending on whether a solvent is used for the dispersion of CNTs or not. Dis­persion state of the CNT in the epoxy nanocomposites was morphologically characterized by the field emission scanning electronic microscope and the transmission electron microscope images. It was found that the numerical prediction was in a good agreement with experimental results especially for steady state shear flow.

Structure-property relationship of melt intercalated maleated polyethylene nanocomposites

  • Reddy, M.M.;Gupta, Rahul K.;Bhattacharya, S.N.;Parthasarathy, R.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Low density polyethylene nanocomposites were prepared by melt intercalating maleic anhydride grafted polyethylene and montmorillonite clay. It has been found that maleic anhydride has promoted strong interactions between polyethylene and montmorillonite, leading to the homogeneous dispersion of clay layers. Rheological experiments revealed that prepared nanocomposites exhibited shear thinning behaviour. Polyethylene nanocomposites exhibited an increase in steady shear viscosities compared to virgin polyethylene owing to strong polymer clay interactions. The tensile strength of nanocomposites was improved but elongation at break decreased considerably. Also, barrier properties improved significantly with montmorillonite content.

Flame Retardancy of Polypropylene/Montmorillonite Nanocomposites (폴리프로필렌/몬모릴로나이트 나노복합체의 난연성)

  • Lee Sung-Goo;Won Jong Chan;Lee Jae-Heung;Choi Kil-Yeong
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.248-252
    • /
    • 2005
  • PP/MMT nanocomposites having a various compositions were prepared by melt blending with a twin screw extruder. In this study, maleic anhydride-grafted PP (MAH-g-PP) was used as a compatibilizer in order to assist the exfoliation or hen in the pp matrix. from the results or x-ray diffraction (XRD) and transmission electron microscope (TEM) measurements for the nanocomposites, we confirmed that MMT was exfoliated. PPM nanocomposites have shown good flame retardancy by synergistic effect between MMT and flame retardant. The mechanical and thermal properties of the nanocomposites showed significant enhancement compared with those of neat PP, The excellent flame retardancy of the PP/MMT nanocomposites, UL94 V-0 value, was successfully obtained with reduced amount of the flame retardant.

Thermal Properties and Flame Retardancy of Poly(amic acid)/organoclay Nanocomposites (Poly(amic acid)/organoclay 나노복합체의 열적특성 및 난연성)

  • Kim, Sun;Yoon, Doo-Soo;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.177-185
    • /
    • 2007
  • Polyamic acid(PAA)/organoclay nanocomposites containing phosphorous were prepared by solution blending of phosphorylated PAA(PPAA) and organically modified montmorillonite(O-MMT) as a type of layered clays. The nanocomposites were characterized by FT-IR, DSC, TGA, PCFC, SEM, and XRD. The preparation of nanocomposites was confirmed by FT-IR and XRD. SEM pictures showed that the organoclay was dispersed well in the PAA matrix relatively. XRD results indicated that the O-MMT layers were intercalated. The thermal stability and flame retardancy of O-MMT/PPAA nanocomposites were higher than those of pure PAA. PCFC results also showed that the heat release capacity and total heat release values of O-MMT 4 wt%/PPAA-0.2, 0.4, 0.6 composites were decreased with increasing the mole ratio of phosphorous. It was found that the nanocomposite films had the potential to be used as a fire safe material.

Preparation and Characterization of Conducting Polymer Nanocomposites Including Graphene Oxide via In-situ Chemical Polymerization (제자리 화학중합을 통한 그래핀 옥사이드를 포함하는 전도성 고분자 나노복합체의 제조와 특성 분석)

  • Jeong, Yeonjun;Moon, Byung-Chul;Jang, Min-Chae;Kim, Yangsoo
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.180-187
    • /
    • 2014
  • Nanocomposites including graphene oxide (GO) and conducting polymers (PPy, PANI and PEDOT) were prepared via an in-situ chemical polymerization process, and their characteristic properties depending upon the change of conducting polymer (CP) content were analyzed. A confirmation was made on not only the functional groups formed in GO but also the presence of CP existent in the nanocomposites. The molecular interaction between GO and poly(4-styrene sulfonic acid) (PSSA) or CP in the nanocomposites was proposed. With the increase of PEDOT content in the GOPSS/PEDOT nanocomposite, the estimated value of $I_D/I_G$ regarding the Raman analysis of them was decreased and a major change of their Raman spectra characteristic peaks was observed. In the GO-PSS/PEDOT nanocomposite, PEDOT molecules made an exfoliation of GO-PSSA layers and thus they were intercalated among layers. Such a unique molecular morphology induced the highest electrical conductivity for the GO-PSS/PEDOT nanocomposite among three kinds of nanocomposites prepared in this study. It is also noted that the uniform morphology confirmed in this study helped a thermal stability improvement in the nanocomposite due to the presence of GO or GO-PSSA acting as a thermal barrier.

Poly(ethylene terephthalate)(PET) Nanocomposites Filled with Fumed Silicas by Melt Compounding

  • Chung, Su-Chul;Hahm, Wan-Gyu;Im, Seung-Soon;Oh, Seong-Geun
    • Macromolecular Research
    • /
    • v.10 no.4
    • /
    • pp.221-229
    • /
    • 2002
  • PET nanocomposites filled with fumed silicas were prepared via direct melt compounding method at various mixing conditions such as filler type and filler content. Some fumed silicas were pre-treated to improve the wettability and dispersibility, and principal characterizations were performed to investigate the effects of nano fumed silicas on polymer matrix. Hydrophobic fumed silica (M-FS), which has the similar contact angles of water with neat PET, acted as the best reinforcement for the thermal stability and mechanical properties of PET nanocomposite, and FE-SEM images also showed that M-FS was uniformly dispersed into matrix and had good wettability. But, some filler (O-FS) had low dispersibility and caused the deterioration of mechanical properties. Besides, the results of DSC revealed the nucleation effect of all fillers in polymer matrix, and PET nanocomposite filled with hydroptilic fumed silica (FS) showed markedly the characteristic dynamic rheological properties such as shear thinning behavior at very low frequencies and the decrease of viscosity.

Shape Memory Polymer Nanocomposites (형상 기억 고분자 나노 복합 소재)

  • Hong, Jin-Ho;Yun, Ju-Ho;Kim, Il;Shim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.188-198
    • /
    • 2010
  • The term 'shape memory polymers (SMPs)' describes a class of polymers which can remember the original shape and recover from deformed to its original shape by the applied stimuli, e.g., heat, electricity, magnetic field, light, etc. SMPs are classified as one of the 'smart polymers' and have great potentials as high-value-added materials. Especially, low thermal, electrical, and mechanical properties of SMPs can be improved by incorporating the various fillers. This paper aims to review the SMPs and their basic principles, and the trends of the development of SMPs nanocomposites.

Modelling of the interfacial damping due to nanotube agglomerations in nanocomposites

  • Jarali, Chetan S.;Madhusudan, M.;Vidyashankar, S.;Lu, Y. Charles
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 2017
  • Nanocomposites reinforced with carbon nanotube fibers exhibit greater stiffness, strength and damping properties in comparison to conventional composites reinforced with carbon/glass fibers. Consequently, most of the nanocomposite research is focused in understanding the dynamic characteristics, which are highly useful in applications such as vibration control and energy harvesting. It has been observed that those nanocomposites show better stiffness when the geometry of nanotubes is straight as compared to curvilinear although nanotube agglomeration may exist. In this work the damping behavior of the nanocomposite is characterized in terms of loss factor under the presence of nanotube agglomerations. A micro stick-slip damping model is used to compute the damping properties of the nanocomposites with multiwall carbon nanotubes. The present formulation considers the slippage between the interface of the matrix and the nanotubes as well as the slippage between the interlayers in the nanotubes. The nanotube agglomerations model is also presented. Results are computed based on the loss factor expressed in terms of strain amplitude and nanotube agglomerations. The results show that although-among the various factors such as the material properties (moduli of nanotubes and polymer matrix) and the geometric properties (number of nanotubes, volume fraction of nanotubes, and critical interfacial shear stresses), the agglomeration of nanotubes significantly influences the damping properties of the nanocomposites. Therefore the full potential of nanocomposites to be used for damping applications needs to be analyzed under the influence of nanotube agglomerations.

Preparation of poly(methyl methacrylate)/clay nanocomposites by microwaveassisted in-situ radical polymerization

  • Jeong, Ji-Won;Kim, Dong-Hyun;Jang, Jae-Ho;Lee, Jung-Taek;Yoo, Kyung-Hyeon;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.1
    • /
    • pp.19-23
    • /
    • 2019
  • The PMMA (polymethyl methacrylate)/clay nanocomposites were synthesized by in situ radical polymerizations with different clay contents (3 and 7 wt%) using microwave heating. The nanostructure, optical, and thermal properties of the synthesized PMMA/clay nanocomposites were measured by XRD, TEM, AFM, UV-vis, and TGA. It was found that the intercalated- or exfoliated structure of PMMA/clay nanocomposites was strongly dependent on the content of clay. Thus, the imposition of microwave-assisted polymerization facilitated a delamination process of layered silicates to achieve exfoliation state of interlayer distance. The PMMA/3 wt% C10A nanocomposite with well-dispersed and exfoliated clay nano-layers showed the good optical transparency similar to pure PMMA in this study. The thermal decomposition rates of the PMMA/clay nanocomposites become to be lower compared to that of the pure PMMA, indicating the intercalated- or exfoliated inorganic silicate has high thermal stability. A possible reason is that the thermally segmental motion of PMMA polymer into inorganic silicate interlayer spacing has increased the thermal stability of the PMMA/clay nanocomposites.

Synthesis and Properties of Nylon 6/PEG Random Block Copolymer/Clay Nanocomposite via in situ Polymerization (in situ중합을 통한 나일론 6-PEG 랜덤공중합체/점토 나노복합체의 합성 및 물성)

  • Angelica S. Lopez;Pio Sifuentes;Kim, Kap-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.72-74
    • /
    • 2003
  • There has been extensive interest in the development of new nanocomposites. One kind of these systems is the hybrid based on organic polymers and inorganic minerals consisting of layered silicates. Some properties like stiffness, strength, barrier properties, thermal, and oxidative stability can be improved by the presence of the filler in the polymeric matrix[1]. It is reported that, in the nylon 6/clay nanocomposites, the modulus is increased, but impact strength and elongation at break are drastically decreased. (omitted)

  • PDF