• Title/Summary/Keyword: Polymer mortar

Search Result 301, Processing Time 0.031 seconds

An Experimental study on the Mechanical Performance of High-Strength Self-Leveling Mortar according to Polymer Mixing Ratio (폴리머 혼입률에 따른 고강도 자기 수평 모르타르의 역학적 성능에 대한 실험적 연구)

  • Jeong, Min-Goo;Cho, In-Sung;Kim, In-Soo;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.21-22
    • /
    • 2020
  • This study is about high strength self-leveling mortar according to the mixing ratio of polymer. The self-leveling mortar currently released in Korea maintains a compressive strength of 40 Mpa as of 28 days. In addition, the level of bonding strength and flexural strength are kept the same. However, through this study, it is confirmed how the self-leveling mortar with a compressive strength of 60Mpa as of the 28th is shown according to the amount of polymer mixed. Experimental factors were configured according to the amount of polymer mixed, and the types of experiments were to confirm compressive strength, flexural strength, adhesion strength and flow. In addition, by confirming the early strength, a study was conducted to improve the quick workability compared to the self-horizontal mortar in the market.

  • PDF

Physical Properties of Polymer Mortar Recycling Waste Concrete Powder as a Filler (폐콘크리트 미분말을 충전재로 재활용한 폴리머 모르타르의 물성)

  • Hwang, Eui-Hwan;Choi, Jae-Jin;Hwang, Taek-Sung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.317-322
    • /
    • 2005
  • Nowadays, recycling of aggregates from the waste concrete is in big demand due to the protection of environment and the shortage of aggregates that are needed for ever expanding construction projects. This study was undertaken to examine the feasibility of recycling waste concrete powder produced in the crushing process of demolished concrete as a filler material for polymer mortar. In this study, polymer mortar specimens were prepared by varying the mix proportion of polymer binder (ranging 9~15 wt%), waste concrete powder (ranging 0~20 wt%) substituted for silica powder, 0.1~0.3 mm fine aggregate (ranging 21~24 wt%) and 0.7~1.2 mm fine aggregate (ranging 44~47 wt%). For the prepared polymer mortar specimens, various physical properties such as strength, water absorption, heat water resistance, acid resistance, pore distribution and SEM observation were investigated in this work. As a result, physical properties of polymer mortar were observed to have remarkably improved with an increase of polymer binder, but greatly deteriorated with an increase of substitution quantity of waste concrete powder.

Adhesion in Tension of Polymer-Modified Mortars according to Curing Conditions (양생조건에 따른 폴리머 시멘트 모르타르의 인장접착강도)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.200-201
    • /
    • 2018
  • The purpose of this study is to evaluate the adhesion in tension of polymer-modified mortars according to curing conditions. From the test results, the adhesion in tension is seriously affected by type of curing conditions compared with type of polymer dispersions or polymer-cement ratios. The maximum adhesion in tension of EVA-modified mortar with polymer-cement ratio of 20% cured by standard condition is about 1.81 times, the cement mortar cured in water. It is apparent that the adhesion in tension of polymer-modified mortars according to raising of polymer-cement ratio is also much more improved irrespective of type of polymer dispersions and curing conditions.

  • PDF

The Effect of Curing condition on Adhesion in Tension of Polymer-Modified Mortars (양생존건이 폴리머 시멘트 모르터의 접착강도에 미치는 영향)

  • 전우성;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.349-356
    • /
    • 1997
  • The purpose of this study is to evaluate the effect of curing conditions on adhesion in tension of polymer-modified mortar to cement mortar substrate in comparision with ordinary cement mortar. The polymer-modifies mortars using two polymer dispersions and a redispersible polymer power are prepared with various polymer-cement ratios, and tested for the adhesion in tension of the specimens subjected to five curing conditions. From the test results, the adhesion in tension of polymer-modified mortars tends to increase with increasing polymer-cement ratio irrespective of the polymer types and curing conditions. It is apparent that adhesion in tension of polymer-modified mortars is considerably influenced by curing conditions.

  • PDF

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

A study on the mechanical properties of the polymer cement mortar in a high temperature region (고온영역에서의 폴리머시멘트모르타르의 역학적 특성연구)

  • Yoon, Ung-Gi;Seo, Dong-Goo;Kwon, Young-Jin;Kim, Hyung-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.113-114
    • /
    • 2014
  • Though polymer cement mortar is widely used to repair or reinforce concrete as it has superior adhesion, dense internal structure, chemical resistance, and workability in comparison to those of general cement mortar, studies on its behaviors in high temperature environment such as fire is urgently required. Accordingly, in this experiment, the degrees of reduction in the compressive strength at different temperatures was grasped applying ISO834 Heating Curve, and the effect of polymer content and type on compressive strength could be determined. As a result of this experiment, it is found that polymer type and content have a big effect on reduction of compressive strength in high temperature range, and not only the dynamic characteristics but also the combustion characteristics in high temperature range are required to be studied considering occurrence of a fire in the future.

  • PDF

Bond Properties of Polymer Cement Mortar to Reinforced Steel Bar (폴리머 시멘트 몰탈의 철근 부착특성 평가)

  • Park, Dong-Cheon;Cho, Gyu-hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.106-107
    • /
    • 2013
  • The purpose of this study is to characterize the bonding properties between reinforced bar and re-emulsion polymer cement mortar through the pull off test. The properties of polymer cement mortar before and after hardening were measured. Spiral reinforced steel bar was used to control the brittleness fracture of test specimens. In addition polymer content as experimental factors, the types of reinforced bar and corrosion were considered as well. Non linear FEM analysis was carried out to expect the behavior of bonding interface under the certain load.

  • PDF

A Experimental Study on The Durability and Mechanical of Permanent Form Mortar (비탈형영구 거푸집용 모르터의 내구성 및 역학적 특성에 관한 실험적 연구)

  • 김우재;표순주;임남기;김형남;김성식;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.731-736
    • /
    • 1998
  • The dynamics and Durability of Permanent Form Mortar were observed. The results were as the followings. To construct New permanent form, this study constructed permanent form with fiber mortar. In this course glass fiber and polymer, fine aggregate were substituted with river sand and crush sand. To understand material quality effect, flexible mortar and inflexible mortar were tested. According to the microstructure of polymermatrix test by SEM, higher density by Co-matrix effect from polymer addiction was observed. This is considered to increase acid-resistanc, impact proof strenght. In the test of durability of freezing and thawing, polymer mortar was proved to be water proof. It seems to be improved in its characteristics in proportion to increasing W/C ratio. When the W/C ratio is 30%, it is most effective.

  • PDF

The Properties of Durability and Strength of Fiber-Reinforced Polymer-Modified Mortars Using Eco-Friendly UM Resin (친환경 UM수지를 사용한 섬유보강 폴리머 시멘트 모르타르의 내구성 및 강도 특성)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • In this study, performance of fiber-reinforced polymer-modified mortar was studied for the development of eco-friendly materials for high performance repair and reinforcement. The general cement mortar and eco-friendly UM resin was mixed with a certain percentage for increased durability. To increase the strength of the polymer-modified mortar, PVA fiber, steel fiber and hybrid fiber were added at a constant rate. Hybrid fiber is contains the same percentage of PVA fiber and steel fiber. In order to determine the strength properties of fiber-reinforced polymer-modified mortar, the compressive strength test, the splitting tensile strength test and the flexural strength test were performed. And, in order to determine the durability properties of fiber-reinforced polymer-modified mortar, water absorption test and chemical resistance test were performed. From the experimental results, polymer-modified mortar using UM resin was improved durability. And the tensile strength and flexural strength increased, which were the vulnerability of fiber reinforced polymer-modified mortar. From this study, fiber-reinforced polymer-modified mortar using eco-friendly UM resin can be used to repair and reinforcement for the external exposure of concrete structures to improve the durability.

A Study on the Improvement of Adhesion in Tension and Flexure of Polymer Cement Mortar Depending on Various Test Methods (시험방법에 따른 폴리머 시멘트 모르타르의 인장 및 휨접착강도 개선에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.47-57
    • /
    • 2019
  • The purpose of this study is to evaluate the improvement effect of adhesion in tension and flexure of polymer cement mortars that have widely used as a repair-reinforcement material in construction field according to adding of polymer dispersions depending on different three types test methods. From the test results, the adhesion performance is improved with a raise in polymer-cement ratio irrespective of the type of polymer. The maximums of A type adhesion in tension, B type adhesion in tension and adhesion in flexure show 1.90 times, 2.17 times and 1.83 times, respectively that of plain cement mortar. The relative strength ratios, B type adhesion in tension and adhesion in flexure of polymer cement mortars to tensile and flexural strengths of plain mortar respectively are in ranges of 50.1% to 101.7% and 73.8% to 132.9% compared to 46.9% of plain mortar. It is apparent that polymer cement mortars with EVA and polymer cement ratios of 10% to 15% are recommended considering its adhesion performance and cost as a repair-reinforcement material in construction field.