• 제목/요약/키워드: Polymer modified warm mix asphalt

검색결과 7건 처리시간 0.02초

몬순기후형 중온 개질 아스팔트 혼합물의 역학적 물성 평가 연구 (Evaluation on Mechanical Properties of Polymer-Modified Warm-Mix Asphalt Mixtures for Monsoon Climate Regions)

  • 이강훈
    • 한국도로학회논문집
    • /
    • 제19권5호
    • /
    • pp.131-141
    • /
    • 2017
  • PURPOSES : The main distress of asphalt pavements in monsoon climate regions are caused by water damage and plastic deformation due to repeated rain season and increased heavy vehicle traffic volume. In this study, the mechanical properties of polymer-modified warm mix asphalt (PWMA) materials are evaluated to use in monsoon climate regions such as Indonesia. METHODS : Comprehensive laboratory tests are conducted to evaluate moisture resistance and permanent deformation resistance for three different asphalt mixtures such as the Indonesian conventional hot-mix asphalt (HMA) mixture, the polymer-modified asphalt mixture, and the polymer-modified warm mix asphalt (PWMA) mixture. Dynamic immersion test and indirect tensile strength ratio test are performed to evaluate moisture resistance. The wheel tracking test is performed to evaluate rutting resistance. Additionally, the Hamburg wheel tracking test is performed to evaluate rutting and moisture resistances simultaneously. RESULTS :The dynamic immersion test results indicate that the PWMA mixture shows the highest resistance to moisture. The indirect tensile strength ratio test indicates that TSR values of PWMA mixture, Indonesian PMA mixture, and Indonesian HMA mixture show 87.2%, 84.1%, and 67.9%, respectively. The wheel tracking test results indicate that the PWMA mixture is found to be more resistant to plastic deformation than the Indonesian PMA. The dynamic stability values are 2,739 times/mm and 3,150 times/mm, respectively. Moreover, the Hamburg wheel tracking test results indicate that PWMA mixture is more resistant to plastic deformation than Indonesian PMA and HMA mixtures. CONCLUSIONS :Based on limited laboratory test results, it is concluded that rutting resistance and moisture susceptibility of the PWMA mixture is superior to Indonesian HMA and Indonesian PMA mixtures. It is postulated that PWMA mixture would be suitable for climate and traffic conditions in Indonesia.

개질 유황결합재를 사용한 중온아스팔트 혼합물의 특성 (Characteristics of the Warm-Mix Asphalt Mixtures Using the Modified Sulfur Binder)

  • 김세원;박흥석;김종규;정용욱
    • 한국건설순환자원학회논문집
    • /
    • 제4권4호
    • /
    • pp.489-495
    • /
    • 2016
  • 본 연구는 원유정제과정에서 발생되는 산업부산물인 유황에 폴리머 성분의 첨가제를 혼입한 개질유황결합재를 사용하여 중온아스팔트 혼합물을 제조하고, 개질유황결합재를 사용한 중온아스팔트 혼합물의 간접인장강도, 수침전후 및 동결융해 전후 인장강도비와 휠트랙킹 시험에 의한 동적안정도 등의 역학 및 내구 특성을 평가하였다. 실험결과, 개질유황 결합재를 사용한 중온아스팔트 혼합물의 수침전후 인장강도비는 0.88로 중온 폼드 개질 아스팔트의 약 1.13배이며, 동결융해 전후의 인장강도비 또한 0.82로 인장강도비 KS 품질기준 값 0.75 이상을 모두 만족하였다. 간접인장강도는 1.60MPa로 KS 품질기준 값 0.80MPa의 2배, 일반가열아스팔트의 1.29MPa과 비교하여 약 1.24배 높은 간접인장강도를 나타내었다. 또한, 휠트랙킹 시험에 의한 동적안정도는 14,075회/mm로 일반가열아스팔트의 약 15배, 중온 폼드 개질 아스팔트의 약 3배로 피로균열 등 소성변형에 대한 저항성이 매우 우수하게 나타났다.

준고온 첨가제를 사용한 각종 아스팔트 혼합물의 다짐도 변화 연구 (Compactability of various asphalt mixtures using warm mix additive)

  • 박태순
    • 한국도로학회논문집
    • /
    • 제11권4호
    • /
    • pp.127-132
    • /
    • 2009
  • 본 논문은 준고온 첨가제가 혼입된 3 종류(일반아스팔트, SBS 및 SMA)의 아스팔트 혼합물 다짐도 변화에 대한 시험 결과이다. 다짐 특성을 조사 분석하기 위하여 다짐 시간 변화와 준고온 첨가제 함량 변화에 의한 다짐도 측정을 실시하였으며, 다짐 온도를 일반시료에 비하여 $30^{\circ}C$$50^{\circ}C$를 낮추어 밀도를 비교하였다. 선회 다짐 장비를 사용하여 다짐 횟수 변화에 따른 다짐밀도의 변화를 측정하였다. 다짐시간 경과와 다짐도의 관계는 3 종류의 준고온 첨가제를 일반 아스팔트에 첨가하여 다짐시간 변화와 첨가제 함량 변화에 따른 다짐도를 측정하였다. 온도 저감에 따른 다짐도 비교는 일반 아스팔트 혼합물, 고분자 개질 아스팔트 및 SMA 혼합물 3 종류의 혼합물을 사용하여 시험을 실시하였다. 준고온 아스팔트 혼합물은 다짐온도 저감으로 인하여 일반시료 아스팔트 혼합물과 밀도의 차이가 발생하지 않아서 다짐도가 안정된 상태를 나타냈다. 한편, 혼합물의 종류 및 준고온 첨가제의 종류에 따라 밀도의 차이, 다짐도 변화의 추이 변화가 발견되어 이들 두 인자 사이에 상관관계가 있는 것으로 나타났다.

  • PDF

SBS 개질 준고온 아스팔트 바인더의 특성 (Properties of SBS-modified Warm-mix Asphalt Binders)

  • 김성운;이성진;윤여빈;김광우
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.19-24
    • /
    • 2014
  • PURPOSES : The study objective was to evaluate rheology and physical properties of SBS-modified warm-mix asphalt (WMA) binders in comparison with hot-mix asphalt (HMA) binders. METHODS : Four different SBS polymers were used to prepare polymer-modified asphalt (PMA) binders, and three different warm-mix additives (WAD) were used to prepare a total of 12 WMA PMA binders. The kinematic viscosity was measured at 115, $135^{\circ}C$. The PG was determined using DSR and BBR. The pass/fail (P/F) temperatures for high and low PG grading were evaluated for HMA PMA and WMA PMA binders. RESULTS : PG 76-22 binders could be prepared by modifying the base binder (PG 64-22) using 4.5 wt% of SBS. The kinematic viscosity (KV) of SBS PMA was increased by 3 times higher than that of base asphalt. The SBS PMA with WAD showed 10% lower KV than that of the normal SBS PMA at $115^{\circ}C$ The high P/F temperatures showed almost no difference between HMA PMA and WMA PMA binders. The high P/F temperature showed very high correlations with KV ($R^2$ > 0.97). The result of SBS modification caused increase of low P/F temperature by $2.7^{\circ}C$ on average. CONCLUSIONS : Since the PMA with WAD showed 10% lower KV than normal (HMA) PMA at $115^{\circ}C$, reducing PMA mixture temperature down to a WMA level was possible in this study. The higher KV binders showed the higher P/F temperature. There was almost no change in high P/F temperature due to the use of WAD. The SBS PMA, showing an increased low P/F temperature, might show somewhat poorer performance at low-temperature, even though the lower PG grade was staying at the same level, i.e., $-22^{\circ}C$.

준고온 아스팔트 콘크리트 피로저항성 평가 (Evaluation of Fatigue Resistance of Selected Warm-mix Asphalt Concrete)

  • 김성운;이성진;김광우
    • 한국농공학회논문집
    • /
    • 제62권3호
    • /
    • pp.29-38
    • /
    • 2020
  • Since some warm-mix asphalt (WMA) concretes were known to show poorer rut resistance than the hot-mix asphalt (HMA) concretes, many studies were performed in efforts of improving its performance at high temperature. The reason is assumed to be due to the moisture remaining in aggregates dried at lower temperature. Therefore, not only the rut resistance, the crack resistance of WMA concrete was also in question. In this study, fatigue life of WMA concrete was evaluated in comparison with HMA using 3-point bending (3PB) beam test. The asphalt mixtures were prepared based on Korean mix-design guide using a 13 mm dense-graded aggregate and 6 binders; two HMA binders and four WMA binders. By 3PB fatigue test, normal (unmodified) and polymer-modified WMA concretes were evaluated in comparison with normal and polymer-modified HMA concretes at a low temperature (-5℃). The results showed that most of WMA concretes showed longer fatigue lives than HMA concretes, even though the same PG binders were used for HMA and WMA. This result indicates that the WMA concretes have stronger resistance against fatigue cracking than HMA at the low temperature, and this result is in contrast to the high-temperature performance test.

ABS Test를 이용한 아스팔트 혼합물의 수분에 의한 점착특성 평가 (Evaluation of Bond Strength Characteristic of Moisture Induced Asphalt Mixtures using ABS Test)

  • 송정탄;양성린;신오철;이석근;임정혁
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.87-95
    • /
    • 2017
  • PURPOSES : The objectives of this study are to evaluate moisture sensitivity of various asphalt mixtures and to suggest an alternate method for the dynamic immersion test, which is used to determine the application of anti-stripping agent, by analyzing bond strength. METHODS : The bond strength of various asphalt mixtures such as hot mix asphalt, warm mix asphalt, and polymer-modified asphalt was evaluated by the ABS test. In order to characterize moisture sensitivity at different temperatures of the mixtures, the ABS test was conducted at $-10^{\circ}C$, $5^{\circ}C$, $20^{\circ}C$, $40^{\circ}C$, and $54^{\circ}C$ under both dry and wet conditions. The concept of the bond strength ratio was applied for objective moisture sensitivity analysis. Moreover, the bond strength characteristic was compared to the dynamic immersion test to suggest an alternate method to determine the application of anti-stripping agent. RESULTS AND CONCLUSIONS : Overall, the polymer-modified asphalt demonstrates the highest bond strength characteristic regardless of moisture condition and temperature. The bond strength characteristic displays a highly reliable linear relationship from $5^{\circ}C$ to $40^{\circ}C$, and the relationship could be used to predict bond strength at any intermediate temperature. Based on the analysis of bond strength and retained asphalt ratio, the bond strength value of 1254 kPa could be applied as a criterion for anti-stripping agent.