• 제목/요약/키워드: Polymer matrix composite (PMC)

검색결과 8건 처리시간 0.021초

형상기억합금을 이용한 지능형 고분자 복합재료의 설계 (Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy)

  • 정태헌
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구 (A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.

해저환경에 따른 두께가 두꺼운 탄소섬유/에폭시 복합재의 파괴인성에 대한 실험적 연구 (An experimental study on the fracture toughness of thick carbon/epoxy composite in the deep-sea environment)

  • 하성록;이경엽
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.1037-1041
    • /
    • 2005
  • It is well-known that the corrosive behavior of PMC (polymer matrix composite) structure is much better than the metal structure in the marine environment. The understanding of fracture behavior of PMC in the deep-sea environment is essential to expand its use in the marine industry. For a present study, fracture tests have been performed under four different pressure levels such as 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa using the seawater-absorbed carbon/epoxy composite samples. Fracture toughness was determined from the work factor approach as a function of hydrostatic pressure. It was found that fracture behavior was a linear elastic for all pressure levels. The fracture toughness increased with increasing pressure.

  • PDF

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

레이저 발생 초음파와 공기 정합 수신 탐촉자를 이용한 복합재료 적층판의 내부 박리 결함 평가 (Evaluation of Internal Defect of Composite Laminates Using A Novel Hybrid Laser Generation/Air-Coupled Detection Ultrasonic System)

  • 이준현;이승준;변준형
    • 비파괴검사학회지
    • /
    • 제28권1호
    • /
    • pp.46-53
    • /
    • 2008
  • 복합재료의 내부 결함 평가를 위해 일반적으로 적용되어온 초음파 C-스캔 기법은 섬유자동 배열을 통한 정밀 성형 공정에 적용하기에는 많은 어려움이 있다. 따라서 본 연구는 복합재료의 정밀 성형 공정 중에 발생되는 각종 내부 결함들을 비파괴적, 비접촉으로 평가하기 위한 새로운 하이브리드 초음파 평가 기법을 확립하는데 목적이 있다. 이를 위하여 본 연구에서는 초음파 산란 반사(scattering reflection) 방식을 토대로 한 새로운 이중 피치-캐치(dual pitch-catch) 기법을 확립하여 기존의 결함평가를 위해 시험편의 스캔에 소요되는 시간을 줄이면서 우수한 결함 영상을 얻을 수 있는 새로운 하이브리드 기법을 개발하였다. 즉 두 가지 종류의 열경화성 및 열가소성 복합재료(carbon/epoxy, carbon/PPS) 적층판의 내부 박리(delamination) 결함의 영상화를 위하여 레이저를 이용한 유도 초음파의 발생 및 이중 피치-캐치(pitch-catch)방식을 토대로 한 비접촉식 공기 정합 트랜스듀서(air-coupled transducer)를 이용하여 결함 영상을 얻기 위한 핵심 알고리즘을 확립하였다.

해수흡수된 두께가 두꺼운 카본/에폭시 복합재의 정수압 증가에 따른 파괴인성에 대한 실험적 연구 (An Experimental Study on the Fracture Toughness of Seawater-absorbed Thick Carbon/epoxy Composite in the Hydrostatic Pressure Environment)

  • 하성록;이경엽
    • 한국해안해양공학회지
    • /
    • 제18권1호
    • /
    • pp.15-20
    • /
    • 2006
  • 해저환경에서 PMC(고분자기지 복합재)는 금속재 구조물에 비해 부식성이 우수한 것으로 알려져 있다. 해저환경에서 고분자기지 복합재의 파괴특성에 대한 이해는 증가하는 해저구조물 제조에 반드시 필요하다. 본 연구에서, 파괴시험은 해수흡수 된 카본/에폭시 복합재에 대해 정수압을 네단계(0.1 MPa, 100 MPa, 200 MPa and 270 MPa)로 증가시켜 수행하였다. 파괴인성은 정수압에서의 일인자방법을 적용하였다. 파괴거동은 모든 정수압에서 선형적이었고 파괴인성은 정수압이 증가할수록 증가하였다.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).