• Title/Summary/Keyword: Polymer matrix composite (PMC)

Search Result 8, Processing Time 0.024 seconds

Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy (형상기억합금을 이용한 지능형 고분자 복합재료의 설계)

  • Jeong, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

A Study on the Stress Analysis of Discontinuous Fiber Reinforced Polymer Matrix Composites (불연속 섬유강화 고분자 복합재료의 응력해석에 관한 연구)

  • Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.101-107
    • /
    • 2008
  • A composite mechanics for discontinuous fiber reinforced polymer matrix composites(PMC) is analysed in order to predict fiber axial stresses. In continuum approach. frictional slip which usually takes place between fibers and polymers is accounted to derive PMC equations. The interfacial friction stress is treated by the product of the coefficient of friction and the compressive stress norma1 to the fiber/matrix interface. The residual stress and the Poisson's contraction implemented by the rule of mixture(ROM) are considered for the compressive stress normal to the fiber/matrix interface. In addition. the effects of fiber aspect ratio and fiber volume fraction on fiber axial stresses are evaluated using the derived equations. Results are illustrated numerically using the present equations with reasonable materials data. It is found that the fiber axial stress in the center region shows no great discrepancy for different fiber aspect ratios and fiber volume fractions while some discrepancies are shown in the fiber end region.

An experimental study on the fracture toughness of thick carbon/epoxy composite in the deep-sea environment (해저환경에 따른 두께가 두꺼운 탄소섬유/에폭시 복합재의 파괴인성에 대한 실험적 연구)

  • Ha S.R.;Rhee K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1037-1041
    • /
    • 2005
  • It is well-known that the corrosive behavior of PMC (polymer matrix composite) structure is much better than the metal structure in the marine environment. The understanding of fracture behavior of PMC in the deep-sea environment is essential to expand its use in the marine industry. For a present study, fracture tests have been performed under four different pressure levels such as 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa using the seawater-absorbed carbon/epoxy composite samples. Fracture toughness was determined from the work factor approach as a function of hydrostatic pressure. It was found that fracture behavior was a linear elastic for all pressure levels. The fracture toughness increased with increasing pressure.

  • PDF

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Evaluation of Internal Defect of Composite Laminates Using A Novel Hybrid Laser Generation/Air-Coupled Detection Ultrasonic System (레이저 발생 초음파와 공기 정합 수신 탐촉자를 이용한 복합재료 적층판의 내부 박리 결함 평가)

  • Lee, Joon-Hyun;Lee, Seung-Joon;Byun, Joon-Hyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2008
  • Ultrasonic C-scan technique is one of very popular techniques being used for detection of flaws in polymer matrix composite(PMC). However, the application of this technique is very limited for evaluation of defects in PMC fabricated by the automated fiber placement process. The purpose of this study is to develop a novel ultrasonic hybrid system based on nondestructive and non-contact ultrasonic techniques for evaluation of delamination in carbon/epoxy and carbon/PPS composite laminates. It was shown that the newly developed ultrasonic hybrid system based on dual air-coupled pitch-catch technique with ultrasonic scattering reflection concept could provide excellent image with higher resolution of delamination in PMC compared with the conventional pitch-catch method. It is expected that this ultrasonic hybrid technique can be applied for on-line inspection of flaws in PMC during the fabrication process.

An Experimental Study on the Fracture Toughness of Seawater-absorbed Thick Carbon/epoxy Composite in the Hydrostatic Pressure Environment (해수흡수된 두께가 두꺼운 카본/에폭시 복합재의 정수압 증가에 따른 파괴인성에 대한 실험적 연구)

  • Ha Sung-Rok;Rhee Kyong-Yop
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • It is well-known that the corrosive behavior of PMC (polymer matrix composite) structure is much better than the metal structure in the marine environment. The understanding of fracture behavior of PMC in the deep-sea environment is essential to expand its use in the marine industry. For a present study, fracture tests have been performed under low different pressure levels such as 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa using the seawater-absorbed carbon/epoxy composite samples. Fracture toughness was determined from the work factor approach as a function of hydrostatic pressure. It was found that fracture behavior was a linear elastic far all pressure levels. The fracture toughness increased with increasing pressure.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).