• Title/Summary/Keyword: Polymer matrix composite

Search Result 489, Processing Time 0.033 seconds

Dental Properties of Hydroxyapatite Filled Polymer Composite (수산화인회석이 충전된 고분자 복합체의 치과적 물성)

  • Seo, Kitaek;Yoon, Jingu;Kim, Juhwan;Kim, Ohyoung
    • Applied Chemistry
    • /
    • v.9 no.2
    • /
    • pp.25-28
    • /
    • 2005
  • To evaluate the dental restorative application of polymer composites filled with hydroxyapatite (HAP) which is an inorganic component of human bone material, dental properties of the polymer composites were investigated. A visible light system was utilized to activate the acrylate resin matrix of the composites. Maximum loading percentage of HAP in composite was 65 wt% and the depth of cure was 6.0 mm which can be applicable for dental restoration. With increasing the HAP content, degree of conversion of polymer composites was slightly decreased, however, polymerization shrinkage value was not varied. Diametral tensile strength value was enhanced with an increase of HAP content, however, there was no strict trend between flexural strength and HAP concentration. Anyhow, polymer composites prepared herein have superior mechanical properties sufficient specifications applicable to dental materials.

Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers

  • Park, Jong Kyoo;Lee, Jae Yeol;Drzal, Lawrence T.;Cho, Donghwan
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • In the present study, exfoliated graphite nanoplatelets (xGnP) with different particle sizes were coated onto polyacrylonitrile-based carbon fibers by a direct coating method. The flexural properties, interlaminar shear strength, and the morphology of the xGnP-coated carbon fiber/phenolic matrix composites were investigated in terms of their longitudinal flexural strength and modulus, interlaminar shear strength, and by optical and scanning electron microscopic observations. The results were compared with a phenolic matrix composite counterpart prepared without xGnP. The flexural properties and interlaminar shear strength of the xGnP-coated carbon fiber/phenolic matrix composites were found to be higher than those of the uncoated composite. The flexural and interlaminar shear strengths were affected by the particle size of the xGnP, while the particle size had no significant effect on the flexural modulus. It seems that the interfacial contacts between the xGnP-coated carbon fibers and the phenolic matrix play a role in enhancing the flexural strength as well as the interlaminar shear strength of the composites.

Fiber-Matrix Interface Characterization through the Microbond Test

  • Sockalingam, Subramani;Nilakantan, Gaurav
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.282-295
    • /
    • 2012
  • Fiber reinforced polymer matrix composites are widely used to provide protection against ballistic impact and blast events. There are several factors that govern the structural response and mechanical properties of a textile composite structure, of which the fiber-matrix interfacial behavior is a crucial determinant. This paper reviews the microbond or microdroplet test methodology that is used to characterize the fiber-matrix interfacial behavior, particularly the interface shear strength (IFSS). The various analytical, experimental, and numerical approaches applied to the microbond test are reviewed in detail.

Analysis of Thermal Deformation of Carbon-fiber Reinforced Polymer Matrix Composite Considering Viscoelasticity (점탄성을 고려한 탄소 섬유강화 복합재의 열 변형 유한요소 해석)

  • Jung, Sung-Rok;Kim, Wie-Dae;Kim, Jae-Hak
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.174-181
    • /
    • 2014
  • This study describes viscoelasticity analysis of carbon-fiber reinforced polymer matrix composite material. One of the most important problem during high temperature molding process is residual stress. Residual stress can cause warpage and cracks which can lead to serious defects of the final product. For the difference in thermal expansion coefficient and change of resin property during curing, it is difficult to predict the final deformed shape of carbon-fiber reinforced polymer matrix composite. The consideration of chemical shrinkage can reduce the prediction errors. For this reason, this study includes the viscoelasticity and chemical shrinkage effects in FE analysis by creating subroutines in ABAQUS. Analysis results are compared with other researches to verify the validity of the subroutine developed, and several stacking sequences are introduced to compare tested results.

3D Printable Composite Materials: A Review and Prospective (3D 프린터용 복합재료 연구 동향)

  • Oh, Eunyoung;Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.192-201
    • /
    • 2018
  • The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs and it is emerging as the next generation key of manufacturing. Due to the intrinsically limited mechanical/electrical properties and functionalities of printed pure polymer parts, there is a critical need to develop 3D printable polymer composites with high performance. This article gives a review on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the various fields.

Effects of Various Diluents Included in the Resin Matrices on the Characteristics of the Dental Composites (레진 기질에 포함된 희석제들이 치과용 복합 재료의 특성 변화에 미치는 영향)

  • Yoo, Sun-Hwa;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.153-157
    • /
    • 2009
  • The resin matrix in the dental composite is generally composed of 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) as a base resin and triethylene glycol dimethacrylate (TEGDMA) as a diluent for the reduction of viscosity. The applications of dental composite were often limited in dentistry due to the relatively large amounts of volumetric shrinkage during polymerization and water uptake caused by the addition of TEGDMA to the resin matrix. In this study, in order to solve problems stemmed from the TEGDMA by reducing amount of diluent added to resin matrix, diethylene glycol dimethacrylate (DEGDMA) and ethylene glycol dimethacrylate (EGDMA) were explored as new diluents. A decrease in the volumetric shrinkage and an increase in the mechanical strength were observed by replacing TEGDMA in the dental composite to DEGDMA (or EGDMA). Reduction in the mechanical strength of the dental composite containing DEGDMA (or EGDMA), was not serious in comparison with that of the dental composite containing TEGDMA after water uptake.

The Effect of sGO Content in sPEEK/sGO Composite Membrane for Unitized Regenerative Fuel Cell (일체형 재생연료전지 적용을 위한 sGO 함량 변화에 따른 sGO/sPEEK 복합막의 특성 평가)

  • Jung, Ho-Young;Kim, Min-Woo;Lim, Ji-Hun;Choi, Jin H.;Roh, Sung-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.127-131
    • /
    • 2016
  • Polymer electrolyte membrane for unitized regenerative fuel cells requires high proton conductivity, high dimensional stability, low permeability, and low cost. However, DuPont's Nafion which is a commercial polymer electrolyte membrane has high permeability, high cost, and decreasing proton conductivity and dimensional stability over $80^{\circ}C$. To address these problems, sulfonated poly ether ether ketone (sPEEK) which is a low cost hydrocarbon polymer is selected as matrix polymer for the preparation of polymer electrolyte membrane. In addition, composite membrane with improved proton conductivity and dimensional stability is prepared by introducing sulfonated graphene oxide (sGO). The fundamental properties of polymer electrolyte membranes are analyzed by investigating membrane's water content, dimensional stability, proton conductivity, and morphology. The cell test is conducted to consider the possibility of application of sPEEK/sGO composite membrane for an unitized regenerative fuel cell.

Luminescent Polynorbornene/Quantum Dot Composite Nanorods and Nanotubes Prepared from AAO Membrane Templates

  • Oh, Se-Won;Cho, Young-Hyun;Char, Kook-Heon
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.995-1002
    • /
    • 2009
  • Luminescent polynorbornene (PNB)/quantum dot (CdSe@ZnS; QD) composite nanorods and nanotubes were successfully prepared using anodic aluminum oxide (AAO) membranes of various pore sizes as templates. To protect QDs with high quantum yield from quenching during the phosphoric acid treatment used to remove the AAO templates, chemically stable and optically clear norbornene-maleic anhydride copolymers (P(NB-r-MA)) were employed as a capping agent for QDs. The amine-terminated QDs reacted with maleic anhydride moieties in P(NB-r-MA) to form PNB-grafted QDs. The chemical- and photo-stability of QDs encapsulated with PNB copolymers were investigated by photoluminescence (PL) spectroscopy. By varying the pore size of the AAO templates from 40 to 380 urn, PNB/QD composite nanorods or nanotubes were obtained with a good dispersion of QDs in the PNB matrix.

Recent Advances in Composite Polymer Electrolyte Membranes for Fuel Cell (연료전지용 고분자 전해질 복합막의 최근 발전 동향)

  • Vijayakumar, Vijayalekshmi;Son, Tae Yang;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Composite polymer electrolyte membranes based on porous supports have been recognized as an alternative for fuel cell applications since it can provide both mechanical as well as electrochemical stabilities. This mini-review highlights recent advances in supported composite polymer electrolyte membranes using porous matrix and nanofibrous supports. In addition, a comprehensive table listing a wide range of anion and proton exchange pore filling membranes was provided at the end of the review.

On the influence of polymer surface layer thickness on the adhesion of composite assembly. Differences between initial state and thermal ageing.

  • Benard, Q.;Fois, M.;Picard, C.;Grisel, M.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.363-363
    • /
    • 2006
  • Bonding of composite materials with an adhesive layer is one of the most promising alternatives to classical bonding techniques. The use of several surface treatments may greatly increase this adhesion behavior at the initial state. Then in order to see the influence of the thickness of polymer matrix on the adhesion of composite assembly, different surface treatment, which can reduce or increase this thickness, are used (peel ply, tear ply, excimer laser). The influence of this specific parameter is not only discussed at the initial state but also after thermal ageing of the whole bonded assembly. Results show that the best performances at the initial state are not obviously the best performances after ageing.

  • PDF