• Title/Summary/Keyword: Polymer foam

Search Result 164, Processing Time 0.024 seconds

A Fundamental Study on UV Laser Micro Machining of Micro Porous Polymeric Foams (마이크로 다공질 폴리머 폼의 UV 레이저 미세가공에 관한 기초 연구)

  • Oh, Jae-Yong;Shin, Bo-Sung;Lee, Jung-Han;Park, Sang-Hu;Park, Chul-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.572-577
    • /
    • 2012
  • Recently porous polymer has widely been applied to packaging, heat isolation, and sound absorption in various fields from the electrics to the automobiles industry. A lot of micro porosities inside foamed polymer provide lower heat conduction and lighter weight than non-porous polymer, because they involve gas or air during foaming process. In this paper experimental approaches of the UV laser micro machining behavior for Expanded Polypropylene (EPP) foamed polymer materials, which have different expansion rates, were investigated. From these results, the ablation phenomena were finally observed that the ablation is depended upon stronger photo-chemical than photo-thermal effect. This study will also help us to understand interaction between UV laser beam and porous polymer.

An Experimental Study on the Flexural Deflection of Sandwich Panels with Polymer Concrete Facings (폴리머 콘크리트 샌드위치 패널의 휨에 관한 실험적 연구)

  • 함형길;이석건;연규석;이현우;이종원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.54-63
    • /
    • 1997
  • The purpose of this study is to analyse deformation properties by carrying out of flexure experimentations after fabricating polymer concrete sandwich panels which are composed of the polymer concrete in facing and expanded polystyren in cores, and to provide the basic data necessary to design, fabricate and operate the structure using these polymer concrete sandwich panels The analysed result of this study is summarized as follows. 1. The result of experiment on flexural deflection indicated that the thicker the thickness of both cores and facing of the polymer concrete sandwich panels, the smaller the deflection but the larger the ultimate shear force. In addition, it was also shown that the thicker the thickness of these cores and facing, the smaller the increasing rate of the deflection with the increase of load. 2. The breaking shape of polymer concrete sandwich panels by experiment on flexure was different according to the thickness of facing. When the facing was 5mm in thickness, it was the flexure while it was the flexure and shear failure when the facing was 5mm in thickness. As a result, it seems that the thickness of the facing has a great effect on failure. 3. There were induced not only the related formula between load, deflection and deformation according to the thickness of cores and facing on the basis of the flexure experiment, but also formula between load, horizontal displacement, Then, it seems that it will be possible to estimate the above elements by using these related formulas.

  • PDF

Preparation and Characterization of Biodegradable Poly(butylene succinate)(PBS) Foams

  • Lim, Sang-Kyun;Jang, Suk-Goo;Lee, Seok-In;Lee, Kwang-Hee;Chin, In-Joo
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.218-223
    • /
    • 2008
  • In order to obtain crosslinked poly(butylene succinate) (PBS) foams with a closed-cell structure, a commercial-grade PBS was first modified in the melt using two different branching agents to increase the melt viscosity. The rheological properties of the branched and crosslinked PBS were examined by varying the amount of the branching agents. The complex viscosity of the crosslinked PBS increased with increasing amount of the branching agent. However, it decreased with increasing frequency. When 2 phr of the branching agent was added to PBS, the storage modulus (G') was higher than the loss modulus (G") throughout the entire frequency range, showing that the addition of a branching agent increases the melt viscosity and elasticity of PBS effectively. Closed-cell PBS foams were prepared by mixing the chemical blowing agent with the crosslinked PBS. The effect of the foaming conditions such as temperature and time, and the amount of the crosslinking agent on the structure of the expanded PBS foams were also investigated.

A Study on the Micro-deformation of Plain Weave Carbon/Epoxy Composite-Polymer Foam Sandwich Structures during Curing (평직 탄소섬유 복합재료-고분자 포움 샌드위치 구조의 성형 중 미소변형에 관한 연구)

  • Kim Yong-Soo;Chang Seung-Hwan
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.28-36
    • /
    • 2004
  • Micro-tow deformation during forming of PVC foam-fabric composite sandwich structure is investigated to find out the correlation between forming condition and material deformation. The foams used in this research are PVC foams which have 4 different densities and the fabric composite is Carbon/epoxy prepreg which is plain weave (3k) as a skin material. Tow parameters such as crimp angle and tow amplitude are measured using microscope and a proper image tool and are compared with each other. In order to find out the effect of foam deformation during forming on tow deformation the compressive tests of foams are performed in three different environmental temperatures ($25^{\circ}C$, $80{\circ}C$, $125^{\circ}C$). The microscopic observation results show that the micro tow deformations are quite different from each other with respect to the foam density and forming pressure.

Increasing the attractiveness of physical education training with the involvement of nanotechnology

  • Jinyan Ge;Yuxin Hong;Rongtian Zeng;Yunbin Li;Mostafa Habibi
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.291-302
    • /
    • 2023
  • As the first part of the body that strikes the ground during running, sports shoes are especially important for improving performance and reducing injuries. The use of new nanotechnology materials in the shoe's sole that can affect the movement angle of the foot and the ground reaction forces during running has not been reported yet. It is important to consider the material of the sole of the shoe since it determines the long-term performance of sports shoes, including their comfort while walking, running, and jumping. Running performance can be improved by polymer foam that provides good support with low energy dissipation (low energy dissipation). Running shoes have a midsole made of ethylene propylene copolymer (EPP) foam. The mechanical properties of EPP foam are, however, low. To improve the mechanical performance of EPP, conventional mineral fillers are commonly used, but these fillers sacrifice energy return. In this study, to improve the magnificence of physical education training with nanotechnology, carbon nanotubes (CNTs) derived from recycled plastics were prepared by catalytic chemical vapor deposition and used as nucleating and reinforcing agents. As a result of the results, the physical, mechanical, and dynamic response properties of EPP foam combined with CNT and zinc oxide nanoparticles were significantly improved. When CNT was added to the nanocomposites with a weight percentage of less than 0.5 wt%, the wear resistance, physical properties, dynamic stiffness, compressive strength, and rebound properties of EPP foams were significantly improved.

Effects of Previous History on Diffusivity and Solubility of Gas in the Polymer Matrix (이력이 고분자 재료 안으로의 확산 및 용해에 미치는 영향)

  • 윤재동;차성운;최광용;조현종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.108-113
    • /
    • 2000
  • An important process for making a new class of polymeric material is called microcellular plastics invented at the Massachusetts Institute of Technology. Many researches for microcellular plastics have been done in various ways and fields. But a research for the polymer which has previous history has not been tried yet. In this paper, weight gain of $CO_2$ was measured in a polymer matrix which had previous history and no history. In each case, experimental data for solubility and diffusivity was shown. A model for $CO_2$ solution process in molecular range was made. The conclusion of this paper is that the previous history has an effect on diffusivity but not solubility and the previous history made by $CO_2$ in supercritical state makes diffusivity of $CO_2$ larger.

  • PDF

Mechanical characterization of a self-compacting polymer concrete called isobeton

  • Boudjellal, K.;Bouabaz, M.;Belachia, M.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.357-367
    • /
    • 2016
  • This paper illustrates an experimental study on a self compacting polymer concrete called isobeton made of polyurethane foam and expanded clay. Several experiments were conducted to characterize the physic-mechanical properties of the considered material. Application of the Linear Elastic Fracture Mechanics (LEFM) and determining the toughness of two isobetons based on Belgian and Italian clay, was conducted to determine the stress intensity factor $K_{IC}$ and the rate of releasing energy $G_{IC}$. The material considered was tested under static and dynamic loadings for two different samples with $10{\times}10{\times}40$ and $10{\times}15{\times}40cm$ dimensions. The result obtained by the application of the Linear Elastic Fracture Mechanics (LEFM) shows that is optimistic and fulfilled the physic-mechanical requirement of the study.

Adhesion Properties on the Molecular Weight and Various Substrates of Multi-layered Structural Acrylic Adhesive (다층구조형 아크릴 점착제의 분자량 및 피착재 종류에 따른 접착특성)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.514-521
    • /
    • 2015
  • In this study, we would like to describe peel strength and dynamic shear property on various substrates of multi-layered structural double-sided adhesive tape with or without adhesive (AD) prepared by UV curing for an automobile, construction, and display junction. According to adapt the adhesive, the peel and dynamic shear strength of adhesion tape prepared with acrylic foam or various plastic substrates increased with increasing molecular weight, however, decreased over 650000 molecular weight. The adhesion property shows high value at the thin AD layer with decreasing temperature. The interface property shows highest at MW 615000 (AD-4), and the interface junction below MW 615000 resulted to divide from acrylic foam and adhesive layer. From this study, the multi-layered structural double-sided adhesive tapes seem to be a useful for industrial area such as a low surface energy plastic material and curved substrate.

Synthesis of Poly(alkylene carbonate) from Carbon Dioxide (이산화탄소로부터 Poly(alkylene carbonate)의 합성)

  • Lee, Yoon-Bae;Choi, Jeong-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.813-822
    • /
    • 1996
  • In order to reduce carbon dioxide, one of the major greenhouse gases, a new type of copolymer, poly(alkylene carbonate) has been synthesized. The alternating copolymers have been obtained from carbon dioxide and various epoxides with zinc carboxylate as a catalyst. The number-average molecular weight of the polymer is about 50,000 and polydispersity is rather broad(5~10). The polymers are amorphous, and glass-clear materials that exhibit unusually facile and clean thermal decomposition behavior. Complete decomposition with no carbon residue is observed at elevated temperature even in an inert atmosphere. Terpolymers with bulkier epoxides improve the physical properties of the copolymer with simple epoxides. The decomposition properties of the polymer provide versatile applications such as ceramic, metal, and electronic binders and lost-foam casting. Further application of the polymer for the barrier film or the plasticizer will be investigated.

  • PDF

Change of Glass Transition Temperature of PETG Containing Gas (가스를 포함하는 고분자 재료(PETG)의 유리전이온도 변화)

  • Cha, Seong-Un;Yun, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.824-829
    • /
    • 2000
  • The industries use polymer materials for many purposes because they have many merits. But these materials' costs take up too much proportion in overall cost of products that use these materials as their major material. So it is very economical for polymer industries to reduce these costs. Microcellular foaming process appeared in 1980's to solve this problem and it proved to be quite successful. This process uses inert gases such as CO2, N2. As these gases are dissolved into polymer matrices. many properties are changed. Glass transition temperature is one of these properties. DSC, DMA are devices that measures this temperature, but these are not sufficient to measure the temperature of polymer containing gas. In this paper, we devised a new tester that uses magnetism. We used this device to acquire data of the change of glass transition temperature and made Cha-Yoon model that can predict the change of glass transition temperature. Using this model, the change of this temperature can be estimated as a function of weight gain of gas. Cha-Yoon model proved that Chow's model is inappropriate to predict the change of glass transition temperature of polymer matrices containing gas.