• Title/Summary/Keyword: Polymer flow

Search Result 753, Processing Time 0.031 seconds

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model (이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Roh, Hyung-Woon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF

A comparative analysis of sheeting die geometries using numerical simulations

  • Igali, Dastan;Wei, Dongming;Zhang, Dichuan;Perveen, Asma
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.111-125
    • /
    • 2020
  • The flow behavior of polymer melts within a slit die is an important consideration when designing a die geometry. The quality of the extruded polymer product can be determined through an evaluation of the flow homogeneity, wall shear rate and pressure drop across the central height of the die. However, mathematical formulations cannot fully determine the behavior of the flow due to the complex nature of fluid dynamics and the nonlinear physical properties of the polymer melts. This paper examines two slit die geometries in terms of outlet velocity uniformity, shear rate uniformity at the walls and pressure drop by using the licensed computational fluid dynamics package, Ansys POLYFLOW, based on the finite element method. The Carreau-Yasuda viscosity model was used for the rheological properties of the polypropylene. Comparative analysis of the simulation results will conclude that the modified die design performs better in all three aspects providing uniform exit velocity, uniform wall shear rates, and lower pressure drop.

Development of Automated Diffusion Cell for Determining In Vitro Drug Release from Transdermal Device (경피흡수제형의 in vitro 약물방출실험을 위한 연속확산 장치의 개발)

  • Byun, Young-Rho;Choi, Young-Kweon;Jeong, Seo-Young;Kim, Young-Ha
    • YAKHAK HOEJI
    • /
    • v.34 no.3
    • /
    • pp.161-165
    • /
    • 1990
  • An automated, simple, and reliable method was developed for determining in vitro drug release rate from transdermal delivery dosage forms. The patch is held in position in the heating block by sandwiching it between the middle plate and the bottom plate of diffusion cell. The dissolution profile of the commercially available transdermal scopolamine patch was determined over a 72-h period, and the results were compared with those obtained with other methods; paddle-over-disk method, reciprocating method, and diffusion cell method. It was demonstrated that the flow-through method is equivalent in terms of release rate profile and accumulated released drug amount over the lifetime of the dosage form tested. Also this method is simple, reliable and reproducible. Therefore, this technique can be used in a quality control for assuring product uniformity.

  • PDF

An Experimental Study on Friction Reduction in Journal Bearings (저어널 베어링에서의 마찰감소현상에 대한 실험적 연구)

  • 이득우;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.298-304
    • /
    • 1986
  • The friction reduction by dilute polymer solutions was investigated experimentally in journal bearings. Flow pattern visualization and torque measurements were performed for a concentric case (.epsilon.=0). The effects of polymer concentration, bearing clearance, and polymer molecular weight on friction reduction were examined. The frictional torque and the intensity of vortices of the case of polymer solution were reduced compared with those of base oil only.

A Study on Compressor Seal for Automotive Air-conditioner using Polymer Resin (고분자 수지를 이용한 자동차 에어컨용 압축기의 씰에 관한 연구)

  • 정태형;하영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.22-27
    • /
    • 2002
  • The existing compressor steel seal used in automotive air-conditioner has the problem of oil leakage and the deterioration in shielding performance, due to the abrasion and the corrosion of the material. A new type of polymer resin seal is studied in the research. The polymer resin seal has the characteristics of high anti-abrasiveness and anti-corrosiveness, which can overcome the deflects of the steel seal. In addition, the seal needs lower manufacturing cost and is appropriate to mass production, because it is made by the injection molding method requiring no mechanical processing. The profile generation program for seal mold has been developed using the gradient method, and the molding characteristics of the seal have analyzed through the flow analysis and the warpage analysis. The program has been verified by comparing the analysis results with the measured data of the test product. The research might be said to provide the basic method to produce the polymer resin seals with various types and dimensions.

  • PDF

A study on the Water Retention of Coating Colors(V)-Application of Alkali Sensitive Water Retention and Rheology Modifiers- (도공액의 보수성에 관한 연구(제5보)-알칼리 반응형 보수.유동성 개량제의 적용-)

  • 이용규;엄기용
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.28-35
    • /
    • 1997
  • Sole-binder formulation has been recently introduced to solve the problems of coating process and printability caused by use of natural polymer However, the decrease of natural polymer application causes another problem in paper coating. Therefore, synthetic thickener is used to get similar effect to natural polymer usage. In this study. low shear viscosity, dewatering of coating colors were measured to evaluate the performance of the alkali sensitive water retention and rheology modifiers. The effects of alkali sensitive thickener on the physical properties of coated paper and printability were also investigated. The gloss and printability of coated paper containing the synthetic flow modifier were similar or superior to those of CMC containing coated paper. This modifier was also effective to improve the problems caused by the use of starch. The results indicated that the flow modifier synthesized with alkali sensitive thickener can reduce the problems of natural polymer and could be a good substitute f3r a natural polymer.

  • PDF

Study of Equivalent Retention among Different Polymer-Solvent Systems is Thermal Field-Flow Fractionation

  • 김원숙;박영훈;문명희;유유경;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.868-874
    • /
    • 1998
  • An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ratio of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted AT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value.