• 제목/요약/키워드: Polymer electrolyte membrane Fuel cell

검색결과 467건 처리시간 0.034초

로봇용 자연급기형 연료전지의 최적구조에 관한 연구 (Study on optimum structure of free-breathing Polymer Electrolyte Membrane Fuel Cell (PEMFC) for robotic application)

  • 최재혁;박상균
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권2호
    • /
    • pp.231-238
    • /
    • 2006
  • The performance of free-breathing polymer electrolyte membrane fuel cell (PEMFC) was studied experimentally and the effect of cathode separator structure on the cell performance was investigated. Cathode separators were used for the cell with $18cm^2$ active area. In channel type, the contact resistance is low, and the nature convection. which is strongly affected by the cross-sectional shape of cathode separator channel, is dominant in a cell performance. The maximum power density with $18cm^2$ active area is $105mW/cm^2$ using the 10mm depth and 2mm width channel. A computational analysis was optimum structure of free-breathing channel type PEMFC for robotic application.

연료전지용 분리막

  • 원종옥
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 첨단 분리막 연구동향
    • /
    • pp.123-134
    • /
    • 2004
  • 연로로부터 화학에너지를 직접 전기에너지로 바꾸는 연료전지(Fuel Cells)중 고체형 고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)와 직접 메탄올 연료전지(Direct Methanol Fuel Cell: DMFC)는 효율이 높고, zero emission 가능성으로 차세대 수송용 전원으로 각광받고 있는 미래 환경친화적 에너지원이다. 수소와 산소(또는 공기)와의 반응을 이용한 것이 PEMFC이고, 수소를 연료로 쓰지 않고 액체상 메탄올을 직접 연료로 사용하는 것이 DMFC이다. (중략)

  • PDF

수중함용 2차전지-연료전지 추진체계의 성능 예측을 위한 M&S 연구 (Modeling and Simulation of Secondary Battery-Fuel Cell Propulsion System for Underwater Vessel to Estimate the Operation Time)

  • 지현진;조성백;배중면
    • 한국군사과학기술학회지
    • /
    • 제17권5호
    • /
    • pp.694-702
    • /
    • 2014
  • One of the most important devices in an underwater vessel is a propulsion system. It should be a quiet and efficient system for stealthy operations in the large mission area. Hence lead-acid battery system has been used to supply the energy to electric motor. Recent technological developments and improvements, such as polymer electrolyte membrane(PEM) fuel cell and lithium polymer battery and have created the potential to improve overall power and propulsion performance. An underwater vessel always starts their mission with a limited energy and is not easy to refuel. Therefore design of energy elements, such as fuel cell and battery, and their load distribution are important to increase the maximum operating time of underwater vessel. In this paper, the lead-acid battery/PEM fuel cell and lithium polymer battery/PEM fuel cell were suggested as propulsion system and their performances were analyzed by modeling and simulation using Matlab/Simulink. Each model concentrated on representing the characteristics of energy element depending on demand current. As a result the effect of load distribution between battery and fuel cell was evaluated and the operation time of each propulsion system was able to be estimated exactly.

왕복 유동을 통한 확산증대 효과가 연료전지 성능에 미치는 영향에 대한 수치해석 (Numerical Simulation of the Oscillating Flow Effect in the Channel of Polymer Electrolyte Membrane Fuel Cell)

  • 김종민;강경식
    • 대한안전경영과학회지
    • /
    • 제20권4호
    • /
    • pp.7-13
    • /
    • 2018
  • This study investigates the enhancement of the oxygen diffusion rate in the cathode channel of a proton exchange membrane fuel cell (PEMFC) by pure oscillating flow, which is the same as the mechanism of human breathe. Three-dimensional numerical simulation, which has the full model of the fuel cell including electrochemical reaction, ion and electronic conduction, mass transfer and thermal variation and so on, is performed to show the phenomena in the channel at the case of a steady state. This model could analysis the oscillating flow as a moving mesh calculation coupled with electrochemical reaction on the catalyst layer, however, it needs a lot of calculation time for each case. The two dimensional numerical simulation has carried on for the study of oscillating flow effect in the cathode channel of PEMFC in order to reduce the calculation time. This study shows the diffusion rate of the oxygen increased and the emission rate of the water vapor increased in the channel by oscillating flow without any forced flow.

공기 호흡형 고분자 전해질 연료전지 제작 및 발전 특성 연구 (THE OPERATING CHARACTERISTICS IN AN AIR-BREATHING POLYMER ELECTROLYTE FUEL CELL)

  • 손영준;박구곤;엄석기;임성대;양태현;윤영기;이원용;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.277-280
    • /
    • 2005
  • Air-breathing polymer electrolyte membrane fuel cells (PEMFC) are highly promising particularly for small-power applications up to tens watts class. A distinctive feature of the air-breathing PEMFC is its simple system configuration in which axial fans operate for dual purposes, supplying both oxidant and coolant in a single manner. In the present study, a nominal SOW air-breathing PEMFC system is developed and investigated to determine the optimal operating strategy through parametric studies (i.e., reactant humidity, and fan-blowing flow rate). The cell voltage distributions are examined as a function of time to evaluate the system performance under various operating conditions.

  • PDF

나노고분자막 구조의 이온투과 특성에 관한 연구 (A Study on the Ion Permeability Characteristics in Nano-Polymer Membrane Structures)

  • 김유영
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.133-137
    • /
    • 2006
  • Ion permeability characteristics in nano-polymer membrane structures are performed to investigate the chemical composition and characteristics of MEA(Membrane Electrolyte Assembly) which is one of the most important parts to decide the performance in PEMFC(Polymer Electrolyte Membrane Fuel Cell) system. Subsequently, the MEA manufacturing process is presented for the uniformed MEA product. In the meantime, the analysis of SEM(Scanning Electron Microscope) is carried out in order to investigate the joint aspect and chemical composition of MEA. As a result of SEM analysis, it is found that the bonded catalyst and carbon composition contain the reasonable amount to get unit cell output. It is also found that the humidification gives the better performance result slightly.