• 제목/요약/키워드: Polymer electrolyte membrane Fuel cell

검색결과 467건 처리시간 0.029초

수냉식 방열을 이용한 연료전지용 PROX 반응기의 성능에 관한 실험적 연구 (Experimental Study on the Preferential Oxidation Reactor Performance Using a Water Cooling Heat Removal for Polymer Electrolyte Membrane Fuel Cell)

  • 김진산;조태현;구본찬;이도형
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.503-509
    • /
    • 2016
  • Fuel cell is a device for producing electricity by using the hydrogen produced by the fuel processor. At this time, CO is also created by the fuel processor. The resulting CO enters the stack where is produce electricity and leads to the adsorption of anode catalyst, finally the CO poisoning occurs. Stack which occurred CO poisoning has a reduction in performance and shelf life are gradually fall because they do not respond to hydrogen. In this paper, experiments that using a PROX reactor to prevent CO poisoning were carried out for removing the CO concentration to less than 10ppm range available in the fuel cell. Furthermore experiments by the PROX reaction was designed and manufactured with a water-cooling heat exchange reactor to maintain a suitable temperature control due to the strong exothermic reaction.

고분자 전해질형 연료전지내의 질량유동이 성능에 미치는 영향 (A Study on the Mass Flow Effects to the Performance of PEMFC)

  • 박창권;조인수;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.422-431
    • /
    • 2007
  • Polymer electrolyte membrane fuel cell(PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance and effect of temperature. These problems can be approached to be solved by using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management. In this paper, the present work is to develop an electrochemical model to examine the electrochemical process inside PEM fuel cell. A complete set of considerations of mass, momentum, species and charge is developed and solved numerically with proper account of electrochemical kinetics. When depth of gas channel becomes thinner, diffusion of reactant makes well into gas diffusion layer(GDL) and the performance increases. Although at low current region there is little voltage difference between experimental data of PEM fuel cell and numerical data. When the porosity size of gas diffusion layer for PEM fuel cell is bigger, oxygen diffusion occurs well and oxygen mass fraction appears high in catalyst layer.

공기공급 조건이 스택성능에 미치는 영향 (The effect of PEMFC stack performance at air supply condition)

  • 박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권3호
    • /
    • pp.232-238
    • /
    • 2008
  • Research has been proceeded on fuel cell which is fueled by hydrogen. Polymer electrolyte membrane fuel cell (PEMFC) is promising power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, temperature dependent performance. These problems could be solved by experiment which is useful for analysis and optimization of fuel cell performance and heat management. In this paper, when hydrogen flows constantly at the stoichiometry of ${\xi}=1.6$, the performance of the fuel cell stack was increased and the voltage difference between each cells was decreased according to the increase of air stoichiometry by 2.0, 2.5, 3.0. Therefore, the control of air flow rate in the same gas channel is important to get higher performance. Purpose of this research is to expect operation temperature, flow rate, performance and mass transportation through experiment and to help actual manufacture of PEM fuel cell stack.

연료전지 차량의 전기적 절연 특성에 관한 연구 (Study on the Electric Insulation Characteristics in a Fuel Cell Vehicle)

  • 유정한;김덕환;김주한;정귀성;금영범;김세훈;안득균
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.150-155
    • /
    • 2012
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack power output is needed to be approximately 100 kW to meet the requirements of automotive applications. In order to secure the electric safety for drivers, passengers and mechanics, it is very important to understand phenomena of an electric insulation in a fuel cell vehicle. In this study, we studied the electric insulation properties and the insulation resistance of stack, system and vehicle in the field of fuel cell was estimated at the applied voltage of 500 V, respectively. Also we discussed the insulation factors such as the conductivity of coolant, the element of vehicle design and the intrinsic resistance of the vehicle components.

연료전지용 팽창기-압축기 개념설계 (Conceptual design of expander-compressor unit for fuel cell systems)

  • 안종민;권태훈;김현진;양시원
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.578-583
    • /
    • 2006
  • This paper introduces conceptual design of scroll expander-compressor unit for fuel cell. Since air discharged out of the fuel cell stack after reaction has still high pressure energy, some power can be extracted out of it by directing it to pass through an expanding device so that the extracted power can be used to drive an auxiliary compressor. For this purpose, a scroll type expander coupled to a scroll type compressor was designed: orbiting scroll of the expander and that of the compressor were made to share three of common drive pins installed in the mid frame plate, and central cavity in the mid-plate was used as a back pressure chamber to provide axial compliance for both orbiting scrolls. Performance analysis for the expander showed that the shaft power of the expander could reduce the auxiliary power consumption in the fuel cell by about one third at the scroll clearance of $10{\mu}m$.

  • PDF

연료전지 내에서의 왕복유동을 이용한 확산증대 효과에 대한 연구 (Enhanced Diffusion in a Polymer Electrolyte Membrane Fuel Cell Using Pulsating Flow)

  • 황용신;최종원;이대영;김민수;이대흥;김서영;조성호;차석원
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.185-189
    • /
    • 2010
  • 본 연구에서는 진동자를 이용하여 채널 내 공기 중 산소의 확산을 증대시키는 방법을 고안하였다. 왕복 유동 시 물질 전달을 지배하는 두 가지 요소인 왕복 유동 주파수와 왕복 유동 거리가 채널 내의 길이방향 확산에 어떤 영향을 미치는지에 대해 선행연구 결과를 이용한 이론적 해석을 통하여 보여주었으며, 이러한 채널내의 길이방향 확산 량의 증가가 스택 성능에 미치는 영향에 대해 알 수 있었다. 스택의 채널 내의 길이방향 확산량은 연료전지가 반응하는 반응량에 비례하게 되며, 따라서 스택내의 길이방향 확산 량을 늘려주는 만큼 연료전지의 최고 파워 밀도가 늘어나게 된다. 이러한 길이방향 확산 량을 증가시키기 위해서는 왕복 유동이 좋은 방법이 되며, 연료전지 운전 시 왕복 유동의 주파수를 증가시키게 되거나 왕복 유동의 거리를 증가시킬수록 채널 내의 길이방향으로 확산 량이 증대되게 된다.

Pd 조촉매가 도입된 PEMFC용 Pt/GDE 제조 및 특성 (Preparation and Characteristics of Pt/GDE Loaded with Pd Promoter for PEMFC)

  • 이홍기;이우금
    • 한국수소및신에너지학회논문집
    • /
    • 제27권3호
    • /
    • pp.264-269
    • /
    • 2016
  • A simple dry chemical approach was developed in order to load palladium (Pd) as a promoter on Pt/gas diffusion electrode (GDE) for polymer electrolyte membrane fuel cell (PEMFC). Palladium(II) bis (acetylacetonate), $Pd(acac)_2$ was sublimed, penetrated into Pt/GDE and then reduced to Pd nanoparticles simultaneously without any reducing agent and any solvent in a glass reactor of $N_2$ atmosphere at $180^{\circ}C$ for 3, 5 and 15 min. Pd distribution was analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), and I-V curve was estimated by using a unit cell with $5{\times}5cm^2$ active area.

연료전지 스택 가스켓용 불소고무에 있어 충전제 종류에 따른 영향 (Effect to Fillers for FKM (Fluorocarbon rubber) Gasket in Fuel Cell Stack)

  • 허병기;강동국;유일혁;이동원;서관호;박이순
    • 공업화학
    • /
    • 제19권1호
    • /
    • pp.86-91
    • /
    • 2008
  • 다양한 고무 충전제가 연료전지 스택용 가스켓의 재료로서의 적합성 및 스택체결에 있어 미치는 영향을 살펴보기 위하여, 카본블랙 및 실리카계 충전제를 사용하여 고무를 배합하였다. 이렇게 배합된 고무재료를 PEMFC (polymer electrolyte membrane fuel cell)의 구동환경을 고려하여 열과 상대유에 대한 장기평가를 실시하였다. 가스켓에 가장 요구되는 압축 영구 줄음율은, 1000 h까지의 장기평가에서도 15% 이하의 우수한 특성을 보였다. 다양한 충전제를 사용한 배합한 고무재료로 가스켓을 제작하고, 체결시 가스켓과 가스켓 사이의 밀봉력을 FEM (finite element method)을 실시하여 최소 0.2 MPa에서 최대 2.5 MPa일 것으로 예측되었다.

Comparison of Electrode Backing Materials for Polymer Electrolyte Membrane Fuel Cells

  • Sasikumar, G.;Ryu, H.
    • 전기화학회지
    • /
    • 제6권3호
    • /
    • pp.183-186
    • /
    • 2003
  • In a PEM fuel cell electrode, backing layer has tremendous impact on electrode performance. The backing layer provides structural support for the porous electrode, distributes the reactants to the other layers and acts as a current collector. It has major influence on the water management in a PEM fuel cell. Selection of suitable backing layer material for the fabrication of electrode is thus very important to achieve high performance. In this paper we have compared the performance of PEM fuel cell electrodes fabricated using carbon paper EC-TPI-060T, carbon cloth EC-CCI-060T, (ElectroChem Inc.USA) and Carbon cloth from Textron, USA (CPW 003 grade). Mass transport problem was observed under non-pressurized condition, at high current densities, in the caie of EC-CC1-060T carbon cloth electrode (at $50^{\circ}C$), due to its higher thickness. The performance of carbon paper electrode was higher than EC-CCI-060T carbon cloth electrode. The performance of Textron carbon cloth was comparable to EC-TPI -060T carbon paper.

NaBH4를 이용한 수소발생반응의 촉매에 관한 연구 (A Study on the Catalysts for Hydrogen Generation Reaction Using NaBH4 Solution)

  • 정성욱;조은애;오인환;홍성안;김성현;서용교
    • 한국수소및신에너지학회논문집
    • /
    • 제14권2호
    • /
    • pp.114-121
    • /
    • 2003
  • Hydrogen generation system using aqueous $NaBH_4$ solution was developed for feeding small polymer electrolyte membrane fuel cells (PEMFCs). Ru was selected as a catalyst with its high activity for the hydrogen generation reaction. Hydrogen generation rate was measured with changing the solution temperature, amount of catalyst loading, $NaBH_4$ concentration, and NaOH (a base-stabilizer) concentration. A passive air-breathing 2 W PEMFC stack was operated on hydrogen generated using $20wt%\;NaBH_4+5wt%$ NaOH solution and Ru catalyst.