• Title/Summary/Keyword: Polymer cement mortar

Search Result 197, Processing Time 0.028 seconds

Physical Properties of Polymer Modified Mortar Containing FRP Wastes Fine Powder (폐FRP 미분말을 사용한 폴리머 시멘트 모르타르의 물성)

  • 황의환;한천구;최재진;이병기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.190-198
    • /
    • 2002
  • In this research the physical properties of polymer modified mortar containing pulverized FRP(Fiber-Reinforced Plastics) wastes fine powder as a part of fine aggregate were investigated. Styrene-butadiene rubber(SBR) latex, polyacrylic ester(PAE) emulsion and ethylene-vinyl acetate(EVA) emulsion were used as Polymer modifier. Polymer modified mortars containing FRP wastes fine powder were prepared with various FRP wastes fine powder replacement(5∼30 wt%) for fine aggregate and polymer-cement ratios(5∼20 wt%). The water-cement ratio, water absorption rates and hot water immersion test, compressive and flexural strengths of polymer modified mortars were tested and the results compared to those of ordinary portland cement mortar. As the results, compressive and flexural strengths of polymer modified mortar containing FRP wastes fine powder depend on the contents of FRP wastes fine powder, type and additional amounts of polymer modifier. Some of them showed higher compressive and flexural strengths than those of ordinary portland cement mortar. Especially, SBR-modified mortar showed the highest strengths properties among three types of polymer modifier. Also water absorption rates, compressive and flexural strengths of SBR-modified mortar were more superior than those of PAE or EVA-modified mortar. The optimum mix proportions of SBR-modified mortar was 20 wt% of polymer-cement ratio and 20 wt% of FRP wastes fine powder replacement. Otherwise heat cured polymer modified mortar accelerated the improvement of early compressive and flexural strengths.

An Experimental Study on Spalling Reduction Methode of Polymer Modified Cement Mortar Using Fiber Cocktail (섬유혼입 공법을 이용한 폴리머 시멘트 모르타르의 폭렬저감방안에 관한 실험적 연구)

  • Kim, Ji-Hoon;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.96-97
    • /
    • 2020
  • Polymer modified cement mortar (PCM) is commonly used as a repair material. However, in high-temperature environments such as fire, it is more likely to explode than cement mortar. The polymer is thermally decomposed at a high temperature to form a gas, and the gas remaining inside the structure increases the internal pressure to generate a burst. When an spalling occurs, the coating is peeled off and dropped, and high temperature is transmitted to the inside of the structure. In severe cases, even the reinforcing bar is exposed, which can lead to the collapse of the structural member due to severe loss of strength. In this study, in order to reduce spalling of PCM, a fiber mixing method was selected from the refractory method to find an appropriate blending ratio of fibers and polymers.

  • PDF

Durability of Polymer-Modified Mortars Using Acrylic Latexes with Methyl Methacrylate (MMA계 아크릴 라텍스를 혼입한 폴리머시멘트 모르타르의 내구성)

  • Hyung Won-Gil;Kim Wan-Ki;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.411-418
    • /
    • 2005
  • Polymer-modified mortar and concrete are prepared by mixing either a polymer or monomer in a dispersed, or liquid form with fresh cement mortar and concrete mixtures, and subsequently curing, and if necessary, the monomer contained in the mortar or concrete is polymerized in situ. Although polymers and monomers in any form such as latexes, water-soluble polymers, liquid resins, and monomers are used in cement composites such as mortar and concrete, it is very important that both cement hydration and polymer phase formation proceed well the yield a monolithic matrix phase with a network structure in which the hydrated cement phase and polymer phase interpenetrate. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete. The purpose of this study is to obtain the necessary basic data to develope appropriate latexes as cement modifiers, and to clarify the effects of the monomer ratios and amount of emulsifier on the properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate(MMA/BA) and methyl methacrylate-ethyl acrylate(MMA/EA) latexes. The results of this study are as follows, the water absorption, chloride ion penetration depth and carbonation depth of MMA/BA-modified mortar are lowest. However, they are greatly affected by the polymer-cement ratio rather than the bound MMA content and type of polymer.

Experimental and numerical analysis of new bricks made up of polymer modified-cement using expanded vermiculite

  • Koksal, Fuat;del Coz Diaz, Juan J.;Gencel, Osman;Alvarez Rabanal, Felipe P.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.319-335
    • /
    • 2013
  • In this paper, the properties of the cement mortar modified with styrene acrylic ester copolymer were investigated. Expanded vermiculite as lightweight aggregate was used for making the polymer modified mortar test specimens. To study the effect of polymer-cement ratio and vermiculite-cement ratio on various properties, specimens were prepared by varying the polymer-cement and vermiculite-cement ratios. Tests of physical properties such as density, water absorption, thermal conductivity, three-point flexure and compressive tests were made on the specimens. Furthermore, a coupled thermal-structural finite element model of an entire corner wall was modelled in order to study the best material configuration. The wall is composed by a total of 132 bricks of $120{\times}242{\times}54$ size, joined by means of a contact-bonded model. The use of advanced numerical methods allows us to obtain the optimum material properties. Finally, comparisons of polymer-cement and vermiculite-cement ratios on physical properties are given and the most important conclusions are exposed.

Development of Polymer Mortar Protection Block for Erosion Control Works (폴리머 모르터를 이용한 사면보호재의 개발)

  • Ryu, Neung-Hwan;Yeon, Kyu-Seok;Kim, Ki-Sung;Lee, Youn-Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.52-58
    • /
    • 1998
  • The objective of this study was to develop a polymer mortar protection block with high strength and durability using unsaturated polyester resin to complement defects of conventional cement mortar protection block. Physical and mechanical properties of the polymer mortar protection block were also investigated. Low absorptivity, high impact strength, and great bending strength of the polymer mortar protection block was compared with those of the conventional cement protection block. In conclusion, the polymer mortar protection block is excellent and useful as industrial products for erosion control works.

  • PDF

Tensile and Adhesive Properties of Polymer Cement Mortar with EVA Emulsion, Blast-Furnace Slag and Fly Ash as a Repair Material (보수재료로서 EVA 에멀젼과 고로슬래그 미분말 및 플라이애쉬를 혼입한 폴리머 시멘트 모르타르의 인장·접착특성)

  • Jo, Young-Kug
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.147-154
    • /
    • 2019
  • The purpose of this study is to evaluate the effect of admixtures as blast-furnace slag(BF) and fly ash(FA) on tensile and adhesive properties of polymer cement mortar(PCM) with EVA emulsion. The test specimens are prepared with five polymer-cement ratio(P/C) and five admixture contents, and tested for tensile strength and adhesion in tension. From the test results, the tensile strength and adhesion in tension could be improved by an appropriate combination of P/C and admixture contents. In particular, the maximum of tensile strength of PCM with P/C 10% and BF content of 10% is 4.70MPa which is about 1.55 times higher than that of plain mortar, and about 1.22 times that of PCM that does not contain any mixture. The ratio of adhesion in tension to tensile strength of PCM with admixtures averaged 55.8%. It is also apparent that admixture contents of 5% or 10% could be proposed for improvement of tensile strength and adhesion in tension of PCM.

Adhesive Strength in Tension of High Volume PAE-Modified Cement Mortar with High Flowability for Floor Finishing

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.739-746
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been carried out in many countries like America, Japan and Germany and so on due to their high performance and good modification effect. PAE of polymer dispersion widely used in situ was employed that the high flowability may be induced in the cement mortar. In order to investigate the modification of cement mortar with high flowability by PAE and fracture mode of adhesive strength properties in tension of that, experimental parameters were set as PAE solid-cement ratio(P/C) and cement: fine aggregate(C:F) and the experiments such as unit weight, flow, consistency change, crack resistance and segregation that inform on the general properties have been done. Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by PAE did grow better as the ratio of PAE solid-cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90 min. after mixing. Adhesive strength in tension increased with continuity during curing period and showed the maximum in case of C:F=1:1 and P/C=20%.

A Study on the Fundamental Properties of Cement Mortar Using Polymer Coated Crumb Rubber (폴리머 코팅 폐타이어 분말을 혼입한 시멘트 모르터의 기초적 성질)

  • Song, Hun;Jo, Young-Kug;Soh, Yang-Seob
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.163-172
    • /
    • 1996
  • Recently, the disposal of used vehicle tires is a big social problem because the amount of used vehicle tires has been increased with development of' automobile industry. Many researches have been made on the recycling of used vehicle tires in the various fields of industry as well as construction industry. When the crumb rubber made of vehicle tires is mixed in cement concrete and mortar, it is indicated that the adhesive strength of interface between the crumb rubber and cement hydrates is very low. The purpose of this study is to improve the fundamental properties by increasing of the adhesion strength of styrene-butadiene rubber(SF3R) latex coated crumb rubber in ; cement mortar. SBR-modified mortar using crumb rubber is also tested as the same method. From the test results, the cement mortar using SBR latex coated crumb rubber have a good fundamental properties compared with that using uncoated crumb rubber. The mechanical properties of SBR-modified mortar using crumb rubber with polymer-cement ratios of 10% are also improved.

Adhesion in Tension of Polymer-Modified Mortars with Blast-Furnace Slag and Fly ash (고로슬래그 및 플라이애쉬를 혼입한 폴리머 시멘트 모르타르의 인장접착강도)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.232-233
    • /
    • 2017
  • The purpose of this study is to evaluate the Adhesion in tension of cement mortar according to adding admixtures such as polymer dispersions, blast-furnace slag and fly ash. From the test results, the adhesion in tension is seriously affected by type of polymer compared with polymer-binder ratios and types of admixture. The maximum adhesion in tension of EVA- modified mortar is about 1.46 times, the cement mortar. It is apparent that the adhesion in tension of polymer-modified mortars according to adding two admixtures is much more improved irrespective of polymer-binder ratio.

  • PDF

Durability of High-Fluidity Polymer-Modified Mortar (고유동 폴리머 시멘트 모르타르의 내구성)

  • Yoon Do Yong;Lee Youn Su;Joo Myung Ki;Jung In Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.691-694
    • /
    • 2004
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption and chloride ion penetration depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The water absorption and chloride ion penetration improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder.

  • PDF