• Title/Summary/Keyword: Polymer cement

Search Result 482, Processing Time 0.027 seconds

Strength Properties and Pore Structure of Epoxy-Modified Mortars under Steam and Steam/Heat Combined Curing (증기 및 가열 조합양생에 의한 에폭시수지 혼입 모르타르의 강도 및 세공구조)

  • Lee, Jae-Hwa;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.107-108
    • /
    • 2011
  • The purpose of present study is to examine the application of effective curing to hardener-free epoxy-modified mortars. The epoxy-modified mortars are prepared with polymer-cement ratios, subjected to two types of curing conditions, and tested for compressive, flexural and tensile strengths. As a result, hardener-free epoxy-modified mortars with steam curing is markedly improved with increasing air-dry curing period. High strength development of the epoxy-modified mortars may be achieved by the dense microstructure by cement and the hardener of the epoxy resin in the mortars.

  • PDF

Study on the Fire Resistance of Light Weight Inorganic Polymer Concrete Panel Wall (Inorganic Polymer Concrete를 이용한 경량패널의 내화특성에 관한 실험적 연구)

  • Hwang, Ji-Soon;Kim, Woo-Jae;Kim, Dae-Hoi;Park, Dong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.205-206
    • /
    • 2011
  • Inorganic Polymer Concrete, a type of Alkali activated cement and concrete, is known for various excellent performances, especially for better performance in the area of high temperature heat resistance(thermal characteristic) than portland cement concrete.In this study, light weight concrete panel was manufactured using this Inorganic Polymer Concrete and then evaluated for fire resistance with a small-scale heating furnace. Since the result showed excellent fire resistance, it is considered usable for manufacturing fire resistant concrete panel wall.

  • PDF

Compressive and Flexural Strength Development Characteristics of Polymer Concrete (폴리머 콘크리트의 압축 및 휨강도 발현 특성)

  • Jin, Nan Ji;Yeon, Kyu-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.101-110
    • /
    • 2018
  • This study experimentally investigated the compressive and flexyral strength development characteristics of polymer concrete using four different type polymeric resins such as unsaturated polyester, vinyl ester, epoxy, and PMMA (polymethyl methacrylate) as binders. The test results show that the average compressive strength of those four different polymer concretes was 88.70 MPa, the average flexural strength was 20.30 MPa. Those test results show that compressive and flexural strengths of polymer concrete were much stronger than compressive and flexural strengths of ordinary Portland cement concrete. In addition, the relative gains of the compressive strength development at the age of 24 hrs compared to the age of 168 hrs were 68.6~88.3 %. Also, the relative gains of the flexural strength development at the age of 24 hrs compared to the age of 168 hrs were 73.8~93.4 %. These test results show that compressive and flexural strengths of each polymer concrete tested in this study were developed at the early age. Moreover, the prediction equations of compressive and flexural strength developments regarding the age were determined. The determined prediction equations could be applied to forecast the compressive and flexural strength developments of polymer concrete investigated in this study because those prediction equations have the high coefficients of correlation. Last, the relations between the compressive strength and the flexural strength of polymer concrete were determined and the flexural/compressive strength ratios were from 1/4 to 1/5. These results show that polymer concretes investigated in this study were appropriate as a flexural member of a concrete structure because the flexural/compressive strength ratios of polymer concrete were much higher than the flexural/compressive strength ratios of Portland cement concrete.

A Study on the Spalling Properties of Polymer Modified Cement Mortar Using Polypropylene Fiber (폴리프로필렌 섬유를 혼입한 폴리머 시멘트 모르타르의 폭렬특성에 관한 연구)

  • Kim, Min-Sung;Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Polymer modified cement mortar (PCM) can improve the performance of adhesion strength, flexural strength, chemical resistance, etc., compared with cement mortar, and is widely used when repairing RC structures. However, PCM causes a burst in an environment with high temperature and fire rate, which causes problems in the stability of the structure. In this study, for the purpose of developing explosive reduction PCM, the polymer mixing ratio is 2%, 4%, 6%, the fiber length is 6mm, 12mm, 6+12mm, and the PP fiber mixing rate is 0.05 Vol% and 0.1 Vol%. Furnace heating experiment (600℃, 800℃) was carried out. As a result of comparative analysis of the explosive properties, it was confirmed that the explosive reduction effect due to the fiber incorporation was insufficient when the polymer mixing amount was 6% or more.

Mechanical Properties and Field Implementation of Floor Mortar Incorporated with VAE Polymer (VAE 폴리머를 이용한 모르타르 바닥재의 역학적 특성과 현작 적용성)

  • Bang, Jin-Wook;Lee, Sun-Mok;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 2017
  • Recently, the importance of the industrial warehouse floor has been increasing due to the development of the distribution and logistics industry. In this present study, an early-hardening polymer floor mortar which can compensate for the limitation of conventional cement based floor mortar regarding fluidity and long curing time was developed. In order to achieve the early-hardening of mortar characteristic ultra rapid hardening cement was used as binder. Four types of mixture proportions in accordance with the vinyl acetate ethylene(VAE) polymer contents with range from 10% to 20% and the other proto proportion without VAE polymer were designed. Mechanical experiments including the fluidity test, compressive strength test, bending test, bond test, and abrasion test were conducted for all mixture proportions. From the flow test result, it was possible to achieve the high flow with 250 mm by controlling the amount of superplasticizer. The incorporation of VAE polymer was found to affect the compressive strength reduction, however, the flexural strength was higher than that of the proto mixture, and it was evaluated to increase the compressive strength / flexural strength ratio. Moreover, at least 2.6 times higher bond strength and more than 4 times higher abrasion resistance were secured. From the mechanical experiments results, the optimum mixing ratio of the VAE polymer was determined to be 10%. As a result of application and monitoring, it shows that it has excellent resistance to cracking, discoloration, impact, and scratch as well as bond performance compared to the cement based floor mortar.

Adhesion Strength and Other Mechanical Properties of SBR Modified Concrete

  • Chmielewska, Bogumila
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.3-8
    • /
    • 2008
  • Polymer-cement composites are known repair materials. The aim of this work is to investigate the influence of various amount of dispersion of carboxylated styrene-butadience copolymer on the selected mechanical properties of polymer-cement concrete (PCC) and on its adhesion to ordinary concrete. The compressive, flexural and tensile strengths as well as frost resistance and fracture resistance of the composites are tested. Adhesion strength of PCC to ordinary concrete, as one of most important performance of good repair material is evaluated and analyzed using three test methods. The results obtained in standard pull-off test are compared with the two other tests. The first one, which is an adaptation of WST (wedge splitting test) characterizes crack propagation in the plane of bond created during repair. In the second test the resistance to shear is a measure of adhesion strength.

A study on the Property Evaluation of Waterproofinging and AntiCorrosion Systems Compositing Polymer Cement and Epoxy Resins (시멘트 혼입 폴리머와 에폭시수지를 복합한 상하수 시설용 방수${\cdot}$방식공법 성능평가에 관한 연구)

  • Bae Gi Sun;Jang Jong Ho;Jang Sung Joo;Oh Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.164-167
    • /
    • 2004
  • The purpose of this study is to investigate the properties of composite systems using polymer cement and epoxy resins for waterproofing and anti-corrosion to concrete structures such as water supply facilities and sewage-works. In this study these engineering properties of composite systems using polymer-modified mortar and epoxy resins were examined and could be confirmed to satisfy the guidelines of KS. Especially, it was turn out that the adhesion properties was excellent and high crack-resistance up to 1.49mm will be perform.

  • PDF

Properties of ECO-permeable Polymer Concrete (환경 친화형 투수성 폴리머 콘크리트의 특성)

  • Park, Fill-Woo;Youn, Joon-No;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.149-152
    • /
    • 2002
  • This study is performed to evaluate the properties of ECO-permeable polymer concrete with blast furnace slag powder and stone dust. The unit weight is in the range of $1,821kg/m^3{\sim}1,955kg/m^3$, the unit weights of those concrete are decreased $15%{\sim}20.8%$ than that of the normal cement concrete. The highest strength is achieved by ECO-permeable polymer concrete filled blast furnace slag powder 50% and stone dust 50%, it is increased 36% by compressive strength, 119% by tensile strength and 217% by bending strength than that of the normal cement concrete, respectively. The coefficient of permeability is in the range of $5.6{\times}10^{-2}cm/s{\sim}8.1{\times}10^{-2}cm/s$, and it is largely dependent upon the mix design.

  • PDF

Early Strength and Properties of EVA Powder Modified High Strength Concrete (EVA Powder 개질 고강도 콘크리트의 초기강도 및 수밀특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.123-127
    • /
    • 2005
  • EVA Powder modified high strength concretes were prepared by varying polymer/binder mass ratio with a constant water/binder mass ratio of 0.3. The effect of EVA powder on the slump, hydration heat, compressive and flexural strength, toughness and water absorption ratio was studied. In hydration heat test, temperature of hydration reaction displayed almost fixed level regardless of containing rate of EVA powder, but peak time of hydration reaction displayed late inclination as containing rate of powder increases. With the same water/binder mass ratio, the compressive strength and water absorption of EVA powder modified concretes decreased slightly when EVA powder was added and the flexural strength of EVA powder modified concretes rised slightly when EVA powder was added. Also, the toughness of the modified concretes can be improved markedly. The interpenetrating structure between the polymeric phase and cement hydrates formed at a $2{\sim}6%$(containing rate of EVA powder). The properties of the polymer modified concretes were influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases.

  • PDF

Mechanical Properties of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 역학적 특성)

  • 김기락;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.336-341
    • /
    • 1998
  • Steel fiber reinforced concrete(SFRC) is a composite material possessing many physical and mechanical properties which are distinct from unreinforced concrete. The use of steel fiber reinforcement to improve the flexural and tensile strengths, extensibility and toughness of ordinary cement concrete is well known at present, but reinforcement of polymer concrete with steel fibers has been hardly reported untill now. The objective of this study was to improve the properties of the polymer concrete by addition of steel fibers. In this paper steel fiber reinforced polymer concrete is prepared with various steel fiber contents and aspect ratio($\ell$ /d), and their mechanical properties were investigated experimentally.

  • PDF