• Title/Summary/Keyword: Polymer cement

Search Result 481, Processing Time 0.025 seconds

A Study on the Viscosity and Flowability of Polymer-Cement Composites for Repairing Cracks of RC Structures (RC 구조물의 균열 보수용 폴리머 시멘트 복합체의 점도와 유동성에 관한 연구)

  • Hong, Dae-Won;Kim, Sang-Hyuk;Kwon, Woo-Chan;Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.166-167
    • /
    • 2021
  • The purpose of this study is to evaluate the viscosity and flowability of polymer-cement composites for repairing cracks of RC structures. The viscosity and flowability of the polymer cement composites differed greatly depending on the type of polymer and the polymer cement ratio, and the polymer cement composites could be produced that could repair fine cracks in the RC structure without material separation by adjusting the proper water-cement ratio. In particular, the mixing of high viscosity EVA-modified polymer composites could be adjusted.

  • PDF

Basic Mix Proportions of Antiwashout Underwater Polymer Cement Mortar as a Repair Material (보수재료로서 수중불분리 폴리머 시멘트 모르타르의 기초적 배합)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.193-194
    • /
    • 2019
  • The purpose of this study is to design the basic mix proportions of antiwashout underwater polymer cement mortar as a repair material. The antiwashout underwater polymer cement mortars are prepared with various mix proportions using three type polymer dispersions without or with antifoamer. From the test results, the whole antiwashout underwater polymer cement mortars can be cast underwater without segregation like plain mortar. It is apparent that the flexural strength of antiwashout underwater SBR cement mortars with antifoamer at polymer- cement ratios of 5% and 10% is higher than that of plain mortar irregardless of a little low compressive strength.

  • PDF

Fundamental properties of polymer composite materials for concrete repair (콘크리트 보수용 폴리머 복합재료의 기초적 성질)

  • 지경용;연규석;이윤수;전철수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.319-322
    • /
    • 1999
  • The adhesion properties of polymer cement mortars for cement concrete repair were evaluated with respect to polymer-cement ratios and the surface conditions of cement concrete substrate. Styrene-butadiene rubber (SBR) was used as an additive for polymer cement mortars. The adhesion strength of cement mortar was smaller than that of polymer cement mortar. The adhesion strengths to the dry surfaces of substrate were larger than those to the wet surfaces, indicating that the dryness of substrate increased the adhesion strength in repairing concrete structures.

  • PDF

A Study on the Abrasion Resistance of Polymer - Modified Mortar According to Curing Conditions (양생조건에 따른 폴리머 시멘트 모르터의 내마모성에 관한 연구)

  • Jo, Young-Kug;So, Seoung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.115-120
    • /
    • 2005
  • In recent years, polymer-modified mortars using polymer dispersions have been widely used as finish and repair materials in the construction industry because of their excellent properties compares to those of ordinary cement mortar. Especially, the adhesion improvement of ordinary cement mortar and concrete has attracted a great deal of attention from researchers, and several unique and simply applicable techniques for the adhesion improvement have been developed. The purpose of this study is to evaluate the abrasion resistance of polymer-modified mortar according various curing methods. The polymer-modified mortar are prepared with various polymer-cement ratios, and are subjected to three curing methods such as dry rure, standard cure and freezing and thawing cure after two curing methods, and then tested for abrasion. From the test results, the polymer-modified mortars with various polymer-cement ratios have some superior abrasion resistance compared with plain mortar. The abrasion resistance of polymer-modified mortars increase with an increase in the polymer-cement ratio, and is better under water cure than any other curing methods. It is concluded that the abrasion resistance of cement mortar is markedly improved by modifying of polymer dispersion.

Pullout Bond Characteristics of Polymer Cement Slurry Coated Rebars (폴리머 시멘트 슬러리 도장철근의 인발부착 특성)

  • 김현기;김민호;장성주;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.117-122
    • /
    • 2001
  • Recently, epoxy-coated re-bar used to the structure partly and put to practical use step, but not economical and appeared to the defect of deterioration of long term bond strength between concrete. The method for complement the defect of epoxy coated re-bar, study of polymer cement slurry coated re-bar started and basic properties appeared to excellent, but study of bond properties embedded in concrete specimens insufficient until now. This study attempts to examination of using possibility for bond strength of polymer cement slurry coated re-bar between concrete specimens compare to ACI Code and KS Code through pull-out test of 15cm$\times$15cm$\times$15cm specimens with polymer cement slurry coated re-bar as polymer cement ratio 50%, 100%, 150%, coating thickness 250${\mu}{\textrm}{m}$, 440${\mu}{\textrm}{m}$ and curing age. In the results of this study, the bond strength of polymer cement slurry coated re-bar compare to plain re-bar, epoxy coated re-bar decreased St/BA-modified polymer cement slurry coated re-bar, but bond strength of PA-modified polymer cement slurry coated re-bar appeared to excellent results. The bond properties of polymer cement slurry coated re-bar between concrete will be obtain more precise results according to compressive strength change of concrete and re-bar diameter size.

  • PDF

Bend Resistance of Polymer Cement Slurry Coated Reinforcing Bars

  • Kim, Wan-Ki;Chang, Sung-Ju;Kim, Hyun-Ki;Soh, Yang-Seob
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.42-48
    • /
    • 2001
  • The bend resistance of coated reinforcing bar is greatly influenced by both the adhesion strength between bar and coating materials, and the followed transformation of coating material as bars bend. Especially, tearing state or partial microscopic cracks are predicted on the inside and outside of bending angle, because tensile strength and elongation of polymer film are very different according to types of polymer dispersions in bar coating, and these damaged parts are rapidly corroded by penetration of corrosive factors. In this study, polymer cement slurry coated reinforcing bars with various polymer dispersions are prepared by following combined conditions, polymer-cement ratio of 50% and 100%, coating thickness of 250$\mu$m and 450$\mu$m, coating number, curing age of 3, 7, 14 and 28days. Then the specimens are tested for working life and bend resistance at bending angles $90^{\circ}$, $135^{\circ}$and $180^{\circ}$ to observe the microscopic damage effect as the bars bend. Also, epoxy-coated reinforcing bars for control experiment were used with 250$\mu$m of coating thickness. The tensile strength for polymer films is performed. From the test results, the working life of the polymer cement slurry is within 90 seconds. Among four types of polymer dispersion, polymer cement slurry coated reinforcing bar using St/BA-1 emulsion has the excellent bend resistance, which is remarkably improved than that of epoxy-coated reinforcing bar. And the bend resistance is more related to elongation than tensile strength of polymer film. Polymer cement slurry with a polymer-cement ratio of 100%, a coating thickness of $450\mu$m and one coating using St/BA emulsion is selected as a most suitable coating material for coated reinforcing bar.

  • PDF

Properties of Polymer Cement Mortar Based on Styrene-Butyl Acrylate according to Emulsifier and Monomer Ratios (유화제 및 단량체비에 따른 스티렌-부틸 아크릴레이트계 폴리머 시멘트 모르타르의 특성)

  • Jo, Youngkug;Hyung, Wongil
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • The purpose of this study is to clarify the effect of the emulsifier ratio on the properties of the polymer cement mortars based on styrene-butyl acrylate (S/BA) latexes, and to obtain necessary basic data to develop appropriate latexes for cement modifiers. The polymer dispersions for cement modifiers was synthesized using styrene and butyl acrylate. Polymer cement mortars based on S/BA latexes were prepared with various monomer and emulsifier ratios, and their water-cement ratio, air content, flexural and compressive strengths, water absorption and chloride ion penetration were tested. From the test results, the maximum flexural and compressive strengths of polymer cement mortars based on S/BA latexes were obtained at a bound styrene content of 60% and an emulsifier ratio of 6%. Also, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the bound styrene and emulsifier content. Accordingly, it is judged that S/BA latexes can be used place of the conventional polymer dispersions of cement modifier.

Adhesion in Tension of Polymer-Modified Mortars according to Curing Conditions (양생조건에 따른 폴리머 시멘트 모르타르의 인장접착강도)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.200-201
    • /
    • 2018
  • The purpose of this study is to evaluate the adhesion in tension of polymer-modified mortars according to curing conditions. From the test results, the adhesion in tension is seriously affected by type of curing conditions compared with type of polymer dispersions or polymer-cement ratios. The maximum adhesion in tension of EVA-modified mortar with polymer-cement ratio of 20% cured by standard condition is about 1.81 times, the cement mortar cured in water. It is apparent that the adhesion in tension of polymer-modified mortars according to raising of polymer-cement ratio is also much more improved irrespective of type of polymer dispersions and curing conditions.

  • PDF

Fundamental Properties of Lightweight Polymer-Cement Mortars Using Polystyrene Beads (Polystyrene Beads를 사용한 경량 폴리머 시멘트 모르타르의 기초적 성질)

  • 이기원;신영수;이윤수;황진하
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.327-332
    • /
    • 2000
  • The objective of this study was to improve the defects of lightweight cement concrete by treating with redispersible polymer powders. The statistical relationships of water-cement ratios, contents of lightweight aggregates and polymer powers and be used for predicting the concrete strength. It was found that the varieties and techniques adopted in this experiment were capable of identifying the influence of various tested for air contents, flow test, water absorption, specific gravity, flexural and compressive strength. This study showed that fundamental properties were very affected by cement- lightweight aggregate ratio, polymer-cement ratio and water-cement ratio.

  • PDF

A Study on the Bond Strength of Coated Rebar by Polymer Cement Slurry Made of EVA and Ultra High-Early Strength Cement (EVA와 초조강시멘트를 사용한 폴리머 시멘트 슬러리 도장철근의 부착강도에 관한 연구)

  • Hyung, Won-gil;Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.633-640
    • /
    • 2015
  • Polymer cement slurry (PCS) is made from organic polymer dispersion and cement has good adhesion to steel, waterproofness and acid resistance due to being of polymer films formed in cement slurry. The purpose of this study is to evaluate the bond strength of coated rebar by polymer cement slurry made of EVA and ultra high-early strength cement. The test pieces are prepared with EVA polymer dispersion and ultra high-early strength cement having four types of polymer-cement ratios, four types of coating thicknesses and four curing ages, and tested for the bond strength test. From the test results, in general, bond strength of PCS-coated rebar is better than that of uncoated rebar and epoxy-coated rebar. It is also high bond strength at curing ages of 7-day, and coating thicknesses of $75{\mu}m$ and $100{\mu}m$. The maximum bond strength of PCS-coated rebar with ultra high-early strength cement and EVA at polymer-cement ratio of 80%, and coating thickness of $100{\mu}m$ is about 1.32 and 1.38 times respectively, the strength of uncoated rebar and epoxy-coated rebar. It is apparent that the curing age, coating thickness, type of polymer and cement are very important factors to improve the bond strength of PCS-coated rebar to cement concrete. We can have basic information that PCS-coated rebar with polymer-cement ratio of 80% or 100% and coating thickness of $100{\mu}m$ at curing age of 1-day can replace epoxy-coated rebar.