• Title/Summary/Keyword: Polymer bead

Search Result 89, Processing Time 0.031 seconds

Study on Tensile Properties of Polyamide 12 produced by Laser-based Additive Manufacturing Process (레이저 적층제조기술로 제작한 폴리아미드 12 시편의 인장특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.217-223
    • /
    • 2019
  • The application of 3D printing technology is expanding due to the production of the complex-shape parts and the one-step manufacturing process. Moreover, various technical solutions in 3D printing are emerging through continuous research and development. Representative technologies include SLS technology, in which a desired area is sintered and laminated by irradiating a powder-type material with a laser. In addition, high-performance engineering plastic parts are being manufactured in increasing numbers. In this study, tensile specimens were fabricated from polyamide 12, a widely available polymer, and the glass bead-reinforced polyamide 12. The specimen-build orientation was divided into 0°, 45°, and 90° on the fabrication platform, and the tensile test temperature was -25℃, 25℃, and 60℃. The test results showed that the tensile modulus of both materials decreases as the build orientation becomes closer to 90°. In addition, the tensile strength of glass bead-reinforced PA12 showed more dependence on the build orientation than PA12. In addition, the tensile modulus and tensile strength decreased with increasing test temperature.

Drug Release from Xyloglucan Beads Coated with Eudragit for Oral Drug Delivery

  • Yoo Mi Kyong;Choi Hoo Kyun;Kim Tae Hee;Choi Yun Jaie;Akaike Toshihiro;Shirakawa Mayumi;Cho Chong Su
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.736-742
    • /
    • 2005
  • Xyloglucan (XG), which exhibits thermal sol to gel transition, non-toxicity, and low gelation concentration, is of interest in the development of sustained release carriers for drug delivery. Drug-loaded XG beads were prepared by extruding dropwise a dispersion of indomethacin in aqueous XG solution (2 wt.-$\%$) through a syringe into corn oil. Enteric coating of XG bead was performed using Eudragit L 100 to improve the stability of XG bead in gastrointestinal (GI) track and to achieve gastroresistant drug release. Release behavior of indomethacin from XG beads in vitro was investigated as a function of loading content of drug, pH of release medium, and concentration of coating agent. Adhesive force of XG was also measured using the tensile test. Uniform-sized spherical beads with particle diameters ranging from 692 $\pm$ 30 to 819 $\pm$ 50 $\mu$m were obtained. The effect of drug content on the release of indomethacin from XG beads depended on the medium pH. Release of indomethacin from XG beads was retarded by coating with Eudragit and increased rapidly with the change in medium pH from 1.2 to 7.4. Adhesive force of XG was stronger than that of Carbopol 943 P, a well-known commercial mucoadhesive polymer, in wet state. Results indicate the enteric-coated XG beads may be suitable as a carrier for oral drug delivery of irritant drug in the stomach.

Investigation of Crack Healing and Optimization of Microbe Carrier for Microbial Self-healing of Concrete Crack (미생물 기반 콘크리트 자기치유를 위한 미생물 담체 최적화 및 균열치유성능 분석)

  • Yun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.62-67
    • /
    • 2024
  • In this paper, we developed and optimized a chitosan-based polymer microbial bead carrier that is cell-friendly, has a high moisture absorption rate, and effectively provides the conditions for microbial biomineral formation as an optimal microbial carrier that protects microorganisms in concrete, and evaluated the self-healing performance of mortar using it. In order to incorporate circular-shaped microbial endospores, a circular-shaped microbial bead carrier was developed by combining chitosan and alginate polymers, and the amount of calcium carbonate produced could be actively controlled by adjusting the composition of the carrier. The amount of biominerals formed and the size of crystals were maximized in the hydrogel bead carrier containing chitosan, and in the case of mortar cracks using this, it was confirmed that self-healing of cracks with a maximum crack width of 0.3mm was achieved within 96 hours after crack generation.

Controlled Release of Nifedipine in Multi-layered Granule System (다중층 과립 시스템에서 니페디핀의 방출 제어)

  • Lee, Soo-Young;Youn, Ju-Yong;Kim, Byung-Soo;Kim, Moon-Suk;Lee, Bong;Khang, Gil-Son;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.229-235
    • /
    • 2007
  • Multi-layered granules were prepared by a fluidized-bed coater and uniformed granules were obtained with a size range between $950{\sim}1000{\mu}m$ in diameter. The granule system was composed of three layers, i.e. seed layer with sugar sphere bead and a water-swellable polymer, middle layer with a drug, solubilizer and polymer, and the top layer of porous membrane with a polymeric binder. The aim of this work is to find out the dependence of a drug dissolution rate on the amount of a water-soluble binder and a solubilizer in the granule system. The results showed that the higher amount of hydrophilic binder in the porous membrane, gave the bigger pore size and porosity and made faster dissolution rate and also the higher amount of solubilizer in drug layer enhanced the dissolution rate of drug.

Preparation and Characterization of Electrospun Pullulan Webs (전기방사를 이용한 Pullulan Electrospun Fiber Webs의 제조 및 특성)

  • Son, Tae-Won;Lee, Gun-Min;Lee, Dong-Won;Lee, Ju-Hyun;Lim, Hak-Sang
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.196-201
    • /
    • 2012
  • Electrospinning is a versatile process used to prepare micro or nano sized fibers from various materials dissolved in volatile solvents. This study reports electrospun pullulan fibrous webs fabricated through electrospinning using water as a solvent. The electrospinning conditions such as pullulan (PUL) concentration and applied voltage were optimized in order to obtain smooth electrospun fibers. The concentration of PUL greatly influenced the viscosity and surface tension of PUL solution. PUL beaded electrospun fibers were obtained from PUL solutions with concentrations lower than 5 wt%, while homogenous electrospun fibers were prepared from solutions with high concentration and high viscosity. The average diameters of PUL fibers were decreased to 200 nm when the polymer concentration was kept at 10 wt% and the applied voltage was fixed at 15 kV during electrospinning. PUL electrospun fiber exhibited higher solubility, flexibility, softness and adhesive strength.

linear Viscoelastic Properties and Relaxation Time Spectrum of Dilute Polymer Solutions (묽은 고분자 용액의선형 점탄성과 완화 시간 스펙트럼)

  • 안경현
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.211-224
    • /
    • 1995
  • 묽은 고분자 용액의선형 점탄성과 완화시간 스펙트럼에 대하여 비드수, 유체역학적 상호작용, 배제 부피와 비선형 스프링들의 영향을 비드-스프링 모델을 통하여 연구하였다. Fixman의 모델을 개량하였고, 비선형 스프링개념을 도입한후 선형점탄성에 관한 식들을 유 도하였다. 그중에서 주로 복고 점도의 크기와 위상차에 대한 BSM 파라미터들의 영향을 살 펴보았다. 실험데이터에서 진동수에 따른 위상차의 평평한 부분의 길이로부터 비드수를 Mark-Houwink 식의 지수 값으로부터 유체역학적 상호작용 파라미터를 그리고 fitting 파라 미터로써 배제 부피 파라미터와 비선형 스프링 파라미터의 함수형태로 표현되는 동적 확장 파라미터를 결정할수 있었다. 또한 광산란 실험등으로부터 배제 부피 파라미터를 결정하게 된다면 이로부터 비선형 스프링 파라미터도 결정할수 있음을 알수 있었다. 한편 불연속적인 현태인 BSM의 완화시간 스펙트럼에 미치는 BSM 파라미터들의 영향을 분석함으로써 각 파람터의 효과와 차이점을 분명히 알수 있었다. 본논문에서는 BSM에 비드수, 유체역학적 상호작용 배제 부피 그리고 비선형 스프링 효과를 동시에 적용하는 방법을 제시하였으며 이 방법을 통하여 묽은 고분자 용액의 선형 점탄성 실험 데이터를 정량적으로 설명할 수 있었다.

  • PDF

The Adhesion Promotion of Glass Fiber Reinforced Composite Using Methacrylate Functional Silanes (메타아크릴레이트 실란을 이용한 유리섬유 강화복합재료의 물성향상)

  • Jang, Jyong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.133-139
    • /
    • 1990
  • Methacrylate functional silanes with different methylene spacer groups have been synthesized and the orientation effect and absorption behavior of these silane coupling agent were investigated by Fourier transform infrared spectroscopy(FT-IR). The mechanical properties of glass bead/polyester composites are found to be dependent on the spacer group of treated silane coupling agent. The absorption rate of the silane coupling agent onto the fumed silica surface decreases with increasing the number of the methylene spacer in methacrylate functional silanes. Silane molecules containing long spacer groups are adsorbed onto silica slightly bowed with respect to the substrate surface. The relationship between silane molecular structure and mechanical properties of polymer composites is also investigated in order to improve hot/wet properties of glass fiber/polyester composites.

  • PDF

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

Polymer magnetic separator for biosensor applications (바이오센서 응용을 위한 자기 분리장치)

  • Kang, Moon-Sik;Kim, Yun-Ho;Yu, Geum-Pyo;Min, Nam-Gi;Hong, Suk-In
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2117-2120
    • /
    • 2004
  • 본 논문은 UV-LIGA 공정, 후막공정을 이용한 바이오센서용 magnetic bead 분리 장치의 제작 기술개발에 관한 것이다. 최근 MEMS(microelectromechanical system) 기술을 이용한 바이오센서에 대한 연구가 활발하게 이루어지고 있다. 이러한 바이오센서 분야 중 혈액이나 다른 원하지 않는 물질을 분리해 주는 분리장치는 MEMS 기술을 이용해 구현이 매우 어려운 부분 중에 하나이다. 기존의 UV-LIGA 공정과 도금법을 이용한 마이크로 전자석 제작하여 분리장치를 제작하는 경우 제작 공정이 매우 복잡하며 매우 많은 공정비용을 요구한다. 이러한 단점을 해결하기 위해 본 논문에서는 Sr 계연의 고분자 자석과 3차원 PDMS(poly-dimethylsiloxane) 마이크로 채널 공정을 이용해 분리장치를 제작하였다. 제작된 분리장치는 $0{\sim}30{\mu}{\ell}$/min 의 속도에서 유체를 흘렸을 90% 이상의 분리 효율을 나타냈다. 개발된 분리 장치는 연재질의 PDMS 로 제작되어 일회용 바이오센서에 적용이 가능하다.

  • PDF

Tumbling Dynamics of Rod-like and Semi-flexible Polymers in Simple Shear and Mixed Flows

  • Lee, Joo-Sung;Kim, Ju-Min
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.807-812
    • /
    • 2009
  • In this work, we focus on the tumbling dynamics of rod-like and semi-flexible polymers in mixed flows, which vary from simple shear to pure rotation. By employing a bead-rod model, the tumbling pathways and periods are examined with a focus on the angular distribution of their orientation. Under the mixed flows, the tumbling dynamics agreed well with earlier studies and confirmed the predicted scaling laws. We found that the angular distribution deviates from that of shear flow as the flow type approaches pure rotation. Finally, we investigated the angular distribution of $\lambda$-DNA in a shear flow and found that the present numerical simulations were in quantitative agreement with the previous experimental data.