• 제목/요약/키워드: Polymer Light Emitting Diode

Search Result 87, Processing Time 0.03 seconds

Improvement of Efficiency in $\pi$-Conjugated Polymer Based on Phenothiazine by Introduction of Oxadiazole Pendant as a Side Chain

  • Choi, Ji-Young;Lee, Bong;Kim, Joo-Hyun;Lee, Kye-Hwan
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.319-324
    • /
    • 2009
  • A new $\pi$-conjugated polymer, poly[(2-methoxy-(5-(2-(4-oxyphenyl)-5-phenyl-1,3,4-oxadiazole)-hexyloxy))-1,4-pheny1ene-1,2-etheny1ene-alt-(10-hexyl-3,7-phenothiazine )-1,2-ethenylene] (PTOXDPPV), was synthesized by the Heck coupling reaction. The electron transporting unit, conjugated 1,3,4-oxadiazo1e (OXD), is attached on the main chain via linear 1,6-hexamethylenedioxy chain. The band gap and photoluminescence (PL) maximum of PTOXDPPV are 2.35 eV and 565 nm, respectively. These values are very close to those of po1y[(2,5-didecyloxy-1,4-phenylene-1,2-etheny1ene )-alt-(l0-hexyl-3,7-phenothiazine)-1,2-ethenylene] (PTPPV), which does not have OXD pendant. The estimated HOMO energy level of PTOXDPPV was -4.98 eV, which is very close to that of PTPPV (-4.91 eV). The maximum wavelength of EL device based on PTOXDPPV and PTPPV appeared at 587 and 577 nm, respectively. In the PL and EL spectrum, the emission from OXD pendant was not observed. This indicates that the energy transfer from OXD pendants to main chain is occurred completely. The EL device based on PTOXD-PPV (ITO/PEDOT/PTOXDPPV/AI) has an efficiency of 0.033 cd/A, which is significantly higher than the device based on PTPPV (ITO/PEDOT/PTPPV/AI) ($4.28{\times}10^{-3}\;cd/A$). From the results, we confirm that the OXD pendants in PTOXDPPV facilitate hole-electron recombination processes in the emissive layer effectively.

The Fabrication and Properties of Polymer Light Emitting Diode with different concentration of MEH-PPV (MEH-PPV 농도에 따른 고분자 OLED의 제작과 특성평가)

  • Gong Su-cheol;Chang Ho-jong;Baek In-jae;Lim Hyun-Seung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.173-176
    • /
    • 2005
  • 고분자 OLED는 저분자 OLED에 비하여 공정이 간단하고 대화면, Plastic 기판을 사용하여 All organic display로의 구현이 있다는 많은 장점을 가지고 있지만 소자의 신뢰성과 안정성에 문제를 갖고 있어 현재까지 저분자 OLED에 비하여 기술 수준이 미약하다. 그러나 차세대 디스플레이의 실현을 위하여 많은 대학과 기업연구소에서 많은 연구가 진행중이다. 본 논문에서는 ITO/PEDOT:PSS/MEH-PPV/Al 구조를 갖는 고분자 OLED를 제작하고 발광메커니즘에 대한 고찰과 계면특성 및 전기$\cdot$광학적 특성을 조사하였다. 정공수송물질인 PEDOT:PSS은 박막의 표면상태를 부드럽게하고 ITO와 MEH-PPV 사이의 접착을 좋게하며 ITO 로부터 정공을 원활하게 MEH-PPV로 전달하여 효율을 향상시킨다. 제작된 소자는 발광효율을 극대화시키기 위하여 정공수송층인 PEDOT:PSS을 첨가시킨 다층구조로서 각각의 박막을 열처리 및 MEH-PPV의 농도를 0.1, 0.3, 0.5, 0.7, 0.9, 1.5wt$\%$로 변화시켜 농도별 표면상태와 전기$\cdot$광학적 특성을 관찰하여 고효율 OLED소자 제작에 가장 적합한 MEH-PPV의 농도에 대하여 고찰하였다.

  • PDF

Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

  • Mousavinasab, Sayed-Mostafa;Khoroushi, Maryam;Moharreri, Mohammadreza;Atai, Mohammad
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.155-163
    • /
    • 2014
  • Objectives: Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Materials and Methods: Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results: The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p < 0.05). Filtek P90 induced higher temperature rise during polymerization than Ceram.X and Beautifil II under demineralized dentin (p < 0.05). The temperature rise under demineralized dentin during Filtek P90 polymerization exceeded the threshold value ($5.5^{\circ}C$), with no significant differences between the DCs of the test materials (p > 0.05). Conclusions: Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

Novel Water-Soluble Polyfluorenes as an Interfacial layer leading to Cathodes-Independent High Performance of Organic Solar Cells

  • Oh, Seung-Hwan;Shim, Hee-Sang;Park, Dong-Won;Jeong, Yon-Kil;Lee, Jae-Kwang;Moon, Seung-Hyeon;Kim, Dong-Yu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.394-394
    • /
    • 2009
  • Water solubility of conjugated polymers may offer many applications. Potential applications of water-soluble conjugated polymers include the polymer light-emitting diode and new materials for nano and micro hollow-capsules, and bio- or chemo-sensors. We synthesized neutral polyfluorenes containing bromo-alkyl groups by the palladium catalyzed Suzuki coupling reaction. Bromo-alkyl side groups in neutral polyfluorenes were quaternized by tri-methyl amine solution. The electrochemical and optical properties of water-soluble conjugated polymers are discussed. This novel synthesized water-soluble conjugated polymers were used as a interfacial dipole layer between active layer and metal cathode in polymer solar cell for enhancement of open-circuit voltage (Voc), which is one of the most critical factors in determining device characteristics. We also investigated the device performance of polymer solar cell with different metal cathode such as Al, Ag, Au and Cu. In polymer solar cell, novel cationic water-soluble conjugated polymers were inserted between active layer and high-work function cathode (Al, Ag, Au and Cu).

  • PDF

The effect of 4,4'-bis(N,N-diethylamino)benzophenone on the degree of conversion in liquid photopolymer for dental 3D printing

  • Lee, Du-Hyeong;Mai, Hang Nga;Yang, Jin-Chul;Kwon, Tae-Yub
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.386-391
    • /
    • 2015
  • PURPOSE. The purpose of this preliminary study was to investigate the effects of adding 4,4'-bis(N,N-diethylamino) benzophenone (DEABP) as a co-initiator to a binary photoinitiating system (camphorquinone-amine) to analyze on the degree of conversion (DC) of a light-cured resin for dental 3D printing. MATERIALS AND METHODS. Cylindrical specimens (N=60, n=30 per group, ${\phi}5mm{\times}1mm$) were fabricated using bisphenol A glycerolate dimethacrylate (BisGMA) both with and without DEABP. The freshly mixed resins were exposed to light in a custom-made closed chamber with nine light-emitting diode lamps (wavelength: 405 nm; power: $840mW/cm^2$) for polymerization at each incidence of light-irradiation at 10, 30, 60, 180, and 300 seconds, while five specimens at a time were evaluated at each given irradiation point. Fourier-transform infrared (FTIR) spectroscopy was used to measure the DC values of the resins. Two-way analysis of variance and the Duncan post hoc test were used to analyze statistically significant differences between the groups and given times (${\alpha}$=.05). RESULTS. In the DEABP-containing resin, the DC values were significantly higher at all points in time (P<.001), and also the initial polymerization velocity was faster than in the DEABP-free resin. CONCLUSION. The addition of DEABP significantly enhanced the DC values and, thus, could potentially become an efficient photoinitiator when combined with a camphorquinone-amine system and may be utilized as a more advanced photopolymerization system for dental 3D printing.

In-situ Thermally Curable Hyper-branched 10H-butylphenothiazine

  • Jo, Mi-Young;Lim, Youn-Hee;Ahn, Byung-Hyun;Lee, Gun-Dae;Kim, Joo-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.492-498
    • /
    • 2012
  • A hyper branched 10-butylphenothiazine with in-situ thermally curable methacrylate (1,3,5-tris-[$\{$10-Butyl-3-(4-(2-methyl-acryloyloxy)-phenyl)-7-yl-10H-phenothiazine$\}$]-benzene, (tris-PTMA)) was synthesized successfully. From the TGA thermogram of tris-PTMA was thermally stable up to $336^{\circ}C$. In the first heating scan of DSC thermogram, tris-PTMA showed glass transition temperature (Tg) at $140^{\circ}C$ and broad endothermic process in the region of $144-179^{\circ}C$, which is thermally curing temperature. In the second heating process, $T_g$ exhibited at $158.7^{\circ}C$ and endothermic process was not observed. Thermally cured tris-PTMA showed no big change in the UV-visible spectrum after washing with organic solvent such as methylene chloride, chloroform, toluene, indicating that thermally cured film was very good solvent resistance. Thermally cured tris-PTMA was electrochemically stable and the HOMO energy level of tris-PTMA was -5.54 eV. The maximum luminance efficiency of double layer structured polymer light-emitting diode based on in-situ thermally cured tris-PTMA was 0.685 cd/A at 16.0 V, which was higher than that of the device without thermally cured tris-PTMA (0.348 cd/A at 15.0 V).

Characterization of the Polymer-based Organic Light Emitting Diode having Inorganic Thin Film Passivation Layer (무기 박막형 보호층을 이용한 고분자 유기발광 다이오드의 특성 평가)

  • Kim, Hoon;Kim, Kwang-Ho;Kim, Jae-Kyung;Lee, Yun-Hi;Han, Jeong-In;Do, Lee-Mi;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.60-64
    • /
    • 2003
  • In this study, the inorganic thin-film passivation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam evaporation system, the various kinds of inorganic thin-films were deposited onto the organic layer and their interface properties between organic and inorganic layer were investigated. In this investigation, the MgO layer showed the most suitable properties, and based on this result, the time dependent emission properties were estimated for the OLED with and without passivation layer. In this experiment, we can see that the time-dependent emission properties of MgO passivated OLED had longer life-time compared to non-passivated OLED. Therefore, we can consider that the MgO thin film is one of the most suitable candidates for the thin-film passivation layer of OLED.

Synthesis and Luminescent Properties of Tetrafluorophenyl Containing Poly(p-phenylenevinylene) Derivatives

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • To investigate the effect of fluoro groups substitution on poly(p-phenylenevinylene) derivatives, poly(2,3,5,6- tetrafluoro-p-phenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), PCTF-PPV, and poly[2,3,5,6-tetrafluoro-p-phenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene], PMTF-PPV, were synthesized by the well-known Wittig condensation polymerization process. To compare the influences of fluoro groups, no fluoro groups containing model polymers, poly(p-phenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), PCPPPV and poly[p-phenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene], p-PMEH-PPV, were also synthesized. The resulting polymers were completely soluble in common organic solvents and exhibited good thermal stability up to 300℃. The polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 259~452 nm and 500~580 nm, respectively. The tetrafluorophenyl containing PCTF-PPV and PMTF-PPV showed relatively red-shifted PL peaks at 521 nm and 580 nm, respectively, compared to that of non-fluoro groups containing polymers (PCP-PPV: 500 nm and p-PMEH-PPV: 539 nm). The single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescene (EL) emissions of PCP-PPV, PCTF-PPV, p-PMEH-PPV and PMTF-PPV were shown at 507, 524, 556, and 616 nm, respectively.

MEH-PPV 농도에 따른 유기발광다이오드의 전기$\centerdot$ 광학적 특성

  • 공수철;백인재;유재혁;임현승;장호정;장영철
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.142-146
    • /
    • 2005
  • 패턴화된 ITO (indium tin oxide)/Glass 기판 위에 정공수송층인 PEDOT:PSS [poly(3,4-othylenedioxythiophene):poly(styrene sulfolnate)]와 발광층인 MEH-PPV [poly(2-methoxy-5-(2-ethyhexoxy)-1,4phenylenvinylene)]를 사용하여 ITO/PEDOT:PSS/MEH-PPV/AI 구조를 갖는 고분자 유기 발광다이오드 (polymer light emitting diode: PLED)를 제작하였다. PLED 제작시 MEH-PPV 의 농도를 ($0.1\;wt\%\;{\~}\;0.9\;wt\%$) 변수로 하여 박막의 표면 거칠기와 박막 층의 마찰재수(friction coefficient) 측정을 통하여 농도에 따른 특성 변화를 조사하였다. MEH-PP 의 농도를 $0.1\;wt\%$ 에서 $0.9\;wt\%$ 로 증가함에 따라 발광 층의 RMS (root mean square)같은 1.72 nm 에서 1.00 nm 로 감소하여 거칠기가 개선되는 경향을 보여 주었다. 그러나 박막간의 마찰계수는 0.048 에서 0.035 로 감소하여 박막간의 접합상태가 나빠지는 현상을 나타내었다. 소자의 전기, 광학적 특성의 경우 MEH-PPV 농도가 $0.5\;{\~}\;0.9\;wt\%$ 범위에서 약 0.35 mA (at 9V)의 전류밀도를 나타내었으며, 최대 휘도는 $0.5\;wt\%$ 농도에서 $409\;cd/m^2$의 값을 나타내었다.

  • PDF

Low-Temperature Processed Thin Film Barrier Films for Applications in Organic Electronics (유기전자소자 적용을 위한 저온 공정용 배리어 박막 연구)

  • Kim, Junmo;An, Myungchan;Jang, Youngchan;Bae, Hyeong Woo;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.402-406
    • /
    • 2019
  • Recently, semiconducting organic materials have been spotlighted as next-generation electronic materials based on their tunable electrical and optical properties, low-cost process, and flexibility. However, typical organic semiconductor materials are vulnerable to moisture and oxygen. Therefore, an encapsulation layer is essential for application of electronic devices. In this study, SiNx thin films deposited at process temperatures below 150 ℃ by plasma-enhanced chemical vapor deposition (PECVD) were characterized for application as an encapsulation layer on organic devices. A single structured SiNx thin film was optimized as an organic light-emitting diode (OLED) encapsulation layer at process temperature of 80 ℃. The optimized SiNx film exhibited excellent water vapor transmission rate (WVTR) of less than 5 × 10-5 g/㎡·day and transmittance of over 87.3% on the visible region with thickness of 1 ㎛. Application of the SiNx thin film on the top-emitting OLED showed that the PECVD process did not degrade the electrical properties of the device, and the OLED with SiNx exhibited improved operating lifetime