• Title/Summary/Keyword: Polymer Foam

Search Result 163, Processing Time 0.028 seconds

Characterization of Poly(lactic acid) Foams Prepared with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용하여 제조한 Poly(lactic acid) 발포체의 특성 분석)

  • Shin, Ji Hee;Lee, Hyun Kyu;Song, Kwon Bin;Lee, Kwang Hee
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.685-693
    • /
    • 2013
  • The foams of a poly(lactic acid) modified by the reactive compounding were produced with the batch foaming technique using supercritical $CO_2(scCO_2)$. Experiments were performed at $105{\sim}135^{\circ}C$ and 12~24 MPa. The blowing ratio and foam structure were significantly affected by changing the temperature and pressure conditions in the foaming process. The blowing ratio first increased with increasing foaming temperature and saturation pressure, reached a maximum and then decreased with a further increase in the foaming temperature and saturation pressure. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger microcellular structures were obtained.

Foaming of Poly(butylene succinate) with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Poly(butylene succinate) 발포)

  • Son, Jae-Myoung;Song, Kwon-Bin;Kang, Byong-Wook;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • The foaming of poly(butylene succinate) (PBS) using supercritical $CO_2(scCO_2)$ was studied. In order to improve the melt strength, PBS was modified using the reactive compounding technique. Rapid decompression of $scCO_2$-saturated PBS at a temperature above the depressed $T_m$ yielded expanded microcellular foams. The resulting foam structure could be controlled by manipulating process conditions. Experiments varying the foaming temperature while holding other variables constant showed that higher temperatures produced larger cells and reduced cell densities. Higher saturated pressures led to higher nucleation densities and smaller cell sizes. Decreasing the rate of depressurization permitted a longer period of cell growth and therefore larger cells were obtained.

In-Situ Formation of Porous HAp Using Polymer Foam Process (폴리머 발포법을 이용한 다공성 HAp 지지체의 제조 및 특성 평가)

  • Kim, Zin-Kook;Ji, Sang-Yong;Ji, Hyung-Bin;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.289-293
    • /
    • 2008
  • Porous HAp with three-dimensional network channels was prepared in a polymer foam process using a in-situ formation. HAp/polyol with various HAp solid contents was formed with an addition of isocyanate. Under all conditions, the obtained porous HAp had pore sizes ranging $50\;{\mu}m$ to $250\;{\mu}m$. The influence of the HAp content on the physical and mechanical properties of porous HAp scaffolds was investigated. As the solid content increased, the porosity of the porous HAp decreased from 79.3% to 77.9%. On the other hand, the compressive strength of the porous HAp increased from 0.7 MPa to 3.7 MPa. With a HAp solid content of 15 g, the obtained porous HAp had physical properties that were more suitable for scaffolds compared to other conditions.

A laboratory pressurized vane test for evaluating rheological properties of excavated soil for EPB shield TBM: test apparatus and applicability (EPB 쉴드 TBM 굴착토의 유동학적 특성 평가를 위한 실내 가압 베인시험: 장비 개발과 적용성 평가)

  • Kwak, Junho;Lee, Hyobum;Hwang, Byeonghyun;Choi, Junhyuk;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.355-374
    • /
    • 2022
  • Soil conditioning improves the performance of EPB (earth pressure balance) shield TBMs (tunnel boring machines) by reducing shear strength, enhancing workability of the excavated soil, and supporting the tunnel face during EPB tunnelling. The mechanical and rheological behavior of the excavated muck mixed with additives should be properly evaluated to determine the optimal additive injection condition corresponding to each ground type. In this study, the laboratory pressurized vane test apparatus equipped with a vane-shaped rheometer was developed to reproduce the pressurized condition in the TBM chamber and quantitively evaluate rheological properties of the soil specimens. A series of the pressurized vane tests were performed for an artificial sand soil by changing foam injection ratio (FIR) and polymer injection ratio (PIR), which are the injection parameters of the foam and the polymer, respectively. In addition, the workability of the conditioned soil was evaluated through the slump test. The peak and yield stresses of the conditioned soil with respect to the injection parameters were evaluated through the rheogram, which was derived from the measured torque data in the pressurized vane test. As FIR increased or PIR decreased, the workability of the conditioned soil increased, and the maximum torque, peak stress, and yield stress decreased. The peak stress and yield stress of the specimen from the laboratory pressurized vane test correspond to the workability evaluated by the slump tests, which implies the applicability of the proposed test for evaluating the rheological properties of excavated soil.

Studies on the Characteristics of EVA Foam by Solvent Treatment (용매 처리에 의한 EVA foam 표면 특성에 관한 연구)

  • Chun, Jae Hwan;Kim, Gu Ni;Hong, Soon Yeong;Yoo, Chong Sun;Oh, Sang Taek
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.9-15
    • /
    • 2001
  • To estimate the effect of the surface state of the EVA foam on an adhesion, the surface was treated with solvents having different values of a solubility parameter and a surface tension. The morphology and the contact angle were measured by SEM and contact angle tester, respectively. The value of the critical surface tension(${\gamma}_{c,0}$) of the EVA foam calculated by Zismann plot was 27.08 dyne/cm. The surface state and the ${\gamma}_c$ of the EVA foam were changed by solvent treatment. The swelling ratio of EVA foam was influenced by solubility parameter of a solvent, on the other hand the degree of change in the surface state was dependent on a surface tension of a solvent. When a surface tension of solvent. When a surface tension of solvent is lower than ${\gamma}_{c,0}$ of the EVA foam, the wettability of a solvent was good and the surface state was greatly changed. The adhesion strength of EVA foam was greatly improved to above 600% as compared to that of the untreated one. As the ${\gamma}_c$ of EVA was closed to the surface tension of the primer, the good adhesion strength was obtained.

  • PDF

Parametric Study on the Design of Sandwich Beams and Plates for Machine Tool Structures (공작기계를 위한 보와 평판의 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim, Dae-Il;Chang, Seung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2006
  • In this paper, polymer composites based sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure of machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance bending stiffnesses in two major directions at the same time. Dynamic robustness of a machine tool structure is investigated using modal analysis. From the results optimal configuration and materials for high precesion machine tools are proposed. And the plate was made of fiber reforced composite material and PVC foam.

Flow behavior of high internal phase emulsions and preparation to microcellular foam

  • Lee, Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.153-160
    • /
    • 2004
  • Open microcellular foams having small-sized cell and good mechanical properties are desirable for many practical applications. As an effort to reduce the cell size, the microcellular foams combining viscosity improvers into the conventional formulation of styrene and water system were prepared via high internal phase emulsion polymerization. Since the material properties of foam are closely related to the solution properties of emulsion state before polymerization, the flow behavior of emulsions was investigated using a controlled stress rheometer. The yield stress and the storage modulus increased as viscosity improver concentration and agitation speed increased, due to the reduced cell size reflecting both a competition between the continuous phase viscosity and the viscosity ratio and an increase of shear force. Appreciable tendency was found between the rheological data of emulsions and the cell sizes of polymerized foams. Cell size reduction with the concentration of viscosity improver could be explained by the relation between capillary number and viscosity ratio. A correlative study for the cell size reduction with agitation speed was also attempted and the result was in a good accordance with the hydrodynamic theory.

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

Parametric study on design of sandwich structures composing of fibre reinfoced composites, polymer foam and resin concrete (섬유강화 복합재료, 고분자 포움 및 레진 콘크리트로 구성된 샌드위치 구조 설계를 위한 파라메트릭 연구)

  • Kim D.I.;Chang S.H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.429-434
    • /
    • 2005
  • In this paper sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure for machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance both directional bending stiffnesses at the same time. From the results optimal configuration and materials for high precesion machine tools are proposed.

  • PDF