• 제목/요약/키워드: Polymer Flow

검색결과 754건 처리시간 0.028초

Study of Equivalent Retention among Different Polymer-Solvent Systems is Thermal Field-Flow Fractionation

  • 김원숙;박영훈;문명희;유유경;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권8호
    • /
    • pp.868-874
    • /
    • 1998
  • An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ratio of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted AT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value.

폴리머 첨가제에 의한 항력감소 난류 채널 유동장의 직접수치모사 (DNS of Drag-Reduced Turbulent Channel Flow due to Polymer Additives)

  • 김경연
    • 대한기계학회논문집B
    • /
    • 제34권8호
    • /
    • pp.799-807
    • /
    • 2010
  • 폴리머 첨가제에 의한 항력감소 난류 채널 유동에 대한 직접수치모사를 스펙트럴 기법을 통해 수치적으로 해석하였다. 마찰속도 및 채널 높이의 절반으로 무차원화한 레이놀즈수는 395 이며, 폴리머 첨가제에 의해 발생하는 폴리머 응력은 FENE-P 모델을 통해 고려하였다. 폴리머 분자의 이완 시간 및 최대 연신 한계와 같은 FENE-P 모델 인자는 항력감소율에 큰 영향을 끼치는 것으로 나타났다. 항력감소율이 낮은 유동과 높은 유동에 대해 항력감소에 따른 난류 통계량의 변화를 조사하였다. 또한, 동일한 항력감소율을 갖는 유동에 대해, 서로 다른 FENE-P 모델 인자가 난류 통계량의 변화에 미치는 영향도 조사하였다. 최종적으로, Li 등(2006) 이 제시한 유변학 인자들과 항력감소율과의 상관관계식을 본 수치해석 결과를 통해 확인하였다.

두께가 급격히 변하는 영역에서 고분자 유동에 의한 복굴절 (Flow-Induced Birefringence of Polymers in the Region of Abrupt Thickness Transition)

  • 이호상
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.20-25
    • /
    • 2009
  • A finite element analysis was carried out for a 4:1 planar contraction die for polymer melts using the viscoelastic constitutive equation of Leonov. Viscoelastic fluids showed significant differences in pressure drop and birefringence in contraction and expansion flows. The pressure drop was higher and the birefringence smaller in expansion than in contraction flow. The difference increased with increasing flow rate. The nonlinear Leonov model was shown to describe the viscoelastic effects observed in experiments.

고분자물질 첨가에 의한 유동특성에 관한 연구 (A Study on the Characteristics of Flow with Polymer Additives)

  • 차경옥;김재근
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF

고온형 고분자전해질형 연료전지에서의 사형 유로와 평행 유로 성능비교에 대한 수치해석적 연구 (Numerical Study on Comparison of Serpentine and Parallel Flow Channel in High-temperature Proton Exchange Membrane Fuel Cells)

  • 안성하;오경민;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.41-55
    • /
    • 2018
  • General polymer electrolyte fuel cell (PEMFC) operates at less than $80^{\circ}C$. Therefore liquid phase water resulting from electrochemical reaction accumulates and floods the cell which in turn increases the mass transfer loss. To prevent the flooding, it is common to employ serpentine flow channel, which can efficiently export liquid phase water to the outlet. The major drawback of utilizing serpentine flow channel is the large pressure drop that happens between the inlet and outlet. On the other hand, in the high temperature polymer electrolyte fuel cell (HT-PEMFC), since the operating temperature is 130 to $180^{\circ}C$, the generated water is in the state of gas, so the flooding phenomenon is not taken into consideration. In HT-PEMFCs parallel flow channel with lower pressure drop between the inlet and outlet is employed therefore, in order to circulate hydrogen and air in the cell less pumping power is required. In this study we analyzed HT-PEMFC's different flow channels by parallel computation using previously developed 3-D isothermal model. All the flow channels had an active area of $25cm^2$. Also, we numerically compared the performance of HT-PEMFC parallel flow channel with different manifold area and Rib interval against the original serpentine flow channel. Results of the analysis are shown in the form of three-dimensional contour polarization curves, flow characteristics in the channel, current density distribution in the Membrane, overpotential distribution in the catalyst layer, and hydrogen and oxygen concentration distribution. As a result, the performance of a real area fuel cell was predicted.

Effect of aggregation on shear and elongational flow properties of acrylic thickeners

  • Willenbacher, N.;Matter, Y.;Gubaydullin, I.;Schaedler, V.
    • Korea-Australia Rheology Journal
    • /
    • 제20권3호
    • /
    • pp.109-116
    • /
    • 2008
  • The effect of intermolecular aggregation induced by hydrophobic and electrostatic interactions on shear and elongational flow properties of aqueous acrylic thickener solutions is discussed. Complex shear modulus is determined at frequencies up to $10^4$ rad/s employing oscillatory squeeze flow. Extensional flow behavior is characterized using Capillary Break-up Extensional Rheometry. Aqueous solutions of poly(acrylic acid)(PAA)/poly(vinylpyrrolidone-co-vinylimidazole) (PVP-VI) mixtures exhibit unusual rheological properties described here for the first time. Zero-shear viscosity of the mixtures increases with decreasing pH and can exceed that of the pure polymers in solution by more than two orders of magnitude. This is attributed to the formation of complexes induced by electrostatic interactions in the pH range, where both polymers are oppositely charged. PAA/PVP-VI mixtures are compared to the commercial thickener Sterocoll FD (BASF SE), which is a statistical co-polymer including (meth) acrylic acid and ethylacrylate (EA) forming aggregates in solution due to "sticky" contacts among hydrophobic EA-sequences. PAA/PVP-VI complexes are less compact and more deformable than the hydrophobic Sterocoll FD aggregates. Solutions of PAA/PVP-VI exhibit a higher zero-shear viscosity even at lower molecular weight of the aggregates, but are strongly shear-thinning in contrast to the weakly shear-thinning solutions of Sterocoll FD. The higher ratio of characteristic relaxation times in shear and elongation determined for PAA/PVP-VI compared to Sterocoll FD solutions reflects, that the charge-induced complexes provide a much stronger resistance to extensional flow than the aggregates formed by hydrophobic interactions. This is most likely due to a break-up of the latter in extensional flow, while there is no evidence for a break-up of complexes for PAA/PVP-VI mixtures. These flexible aggregates are more suitable for the stabilization of thin filaments in extensional flows.

고분자 전해질 연료전지의 매니폴드 설계 및 해석 (NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF MANIFOLD FEED-STREAM IN POLYMER ELECTROLYTE FUEL CELL)

  • 정혜미;엄석기;박정선;이원용;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.260-263
    • /
    • 2005
  • The effects of internal manifold designs the reactant feed-stream in Polymer Electrolyte Fuel Cells (PEFCs) is studied to figure out mass flow-distribution patterns over an entire fuel cell stack domain. Reactants flows are modeled either laminar or turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-determined for computational analysis. In this work, numerical models for reactant feed-stream in the PEFC manifolds are classified into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain information on the optimal design and operation of a PEMC system.

  • PDF

고분자 전해질 연료전지 매니폴드의 열유동 특성에 관한 수치적 연구 (Numerical Study on the Thermal and Flow Characteristics of Manifold Feed-Stream in Polymer Electrolyte Fuel Cells)

  • 정혜미;엄석기;손영준;박정선;이원용;김창수
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.41-52
    • /
    • 2005
  • The effects of internal manifold designs on the reactants feed-stream in Polymer Electrolyte Fuel Cells [PEFCs] is studied to figure out flow and thermal distribution patterns over an entire fuel cell stack. Reactants flows are modeled either laminar of turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-deter-mined for computational analysis. In this work, numerical models for reactants feed-stream In the PEFC manifolds are classified Into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also Investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique Is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain Information on the optimal design and operation of PEFC systems.

  • PDF

Multiphase Simulation of Rubber and Air in the Cavity of Mold

  • Woo, Jeong Woo;Yang, Kyung Mi;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.263-268
    • /
    • 2016
  • In the polymer shaping process that uses molds, the quality of the molded products is determined not only by the flow of the (molten) polymer but also by the air venting in the cavity. Inadequate air venting in the cavity can cause defects in the product, such as voids, short shot, or black streaks. As it is critical to consider the location and size of the vents for proper venting of the air in the cavity, a method that predicts the flow of air and material is required. The venting of air by the flow of rubber inside the cavity was simulated by using a multi-phase computational fluid dynamics method. Through computer simulation, the interface of rubber and air over time was predicted. Then, the velocity and pressure distribution of the venting air were observed. Our research proposes a fundamental method for analyzing the multi-phase flow of polymer materials and air inside the cavity of a mold.

고분자전해질형 연료전지의 단순 채널 리브 형상에서의 물방울 가시화 연구 (Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs))

  • 최민욱;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.386-392
    • /
    • 2014
  • The effective water management in a polymer electrolyte membrane fuel cell (PEMFC) is one of the key strategies for improving cell performance and durability. In this work, an ex situ measurement was carried out to understand the water droplet behavior on the surface of gas diffusion layer (GDL) as a fundamental study for establishing novel water management. For that purpose, simplified cell including one rib and two flow channels was designed and fabricated. Using this ex situ device, the water droplet emergence through the GDL of the PEMFC was emulated to understand liquid water transport through the porous diffusion medium. Through the visualization experiment, the emergence and growth of water droplets at the channel/GDL interface are mainly observed with the surface characteristics of GDL (SGL 10BA, 24BA) and rib when the liquid water passes through the GDL and is expelled to the flow channel. It is expected that the results obtained from this study can contribute to the better understanding on the water droplet behavior (emergence and removal) in the flow channels of PEMFC.