• 제목/요약/키워드: Polymer Electronic Device

검색결과 193건 처리시간 0.027초

고분자 발광다이오드에서 공액고분자 전해질 전자수송층에 의해 변화되는 전자주입 메카니즘 (Electron Injection Mechanisms Varied by Conjugated Polyelectrolyte Electron Transporting Layers in Polymer Light-Emitting Diodes)

  • 엄성수;박주현
    • 폴리머
    • /
    • 제36권4호
    • /
    • pp.519-524
    • /
    • 2012
  • 공액고분자 전해질 전자수송층을 이용하는 고분자 발광소자의 정전용량을 측정하는 것은 전류밀도-전압-발광특성을 측정하는 방법과 더불어 전자수송층으로서 공액고분자 전해질의 기능을 이해하기 위한 소자물리 연구에서 중요한 정보를 제공해준다. 본 연구에서는 고분자 전해질의 반대 이온의 종류에 따라 저주파수 영역에서 정전용량의 거동이 변화하는 것으로부터 전하 주입의 메카니즘에서 차이점이 있음을 분석하였다. 정전용량 모델을 이용한 분석은 전자주입 메카니즘이 음극/전자수송층/발광층 사이의 계면에서 발생하는 쌍극자 배열 또는 전하수송체의 축적에 의한 것임을 나타내었다.

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

PFO : MEH-PPV 발광층과 정공 차단층을 이용한 고분자 발광다이오드의 특성 (Properties of Polymer Light Emitting Diodes Using PFO : MEH-PPV Emission Layer and Hole Blocking Layer)

  • 이학민;공수철;신상배;박형호;전형탁;장호정
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.49-53
    • /
    • 2008
  • The yellow base polymer light emitting diodes(PLEDs) with double emission and hole blocking layers were prepared to improve the light efficiency. ITO(indium tin oxide) and PEDOT : PSS[poly(3,4-ethylenedioxythiophene) : poly(styrene sulfolnate)] were used as cathode and hole transport materials. The PFO[poly(9,9-dioctylfluorene)] and MEH-PPV[poly(2-methoxy-5(2-ethylhe xoxy)-1,4-phenylenevinyle)] were used as the light emitting host and guest materials, respectively. TPBI[Tpbi1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene] was used as hole blocking layer. To investigate the optimization of device structure, we prepared four kinds of PLED devices with different structures such as single emission layer(PFO : MEH-PPV), two double emission layer(PFO/PFO : MEH-PPV, PFO : MEH-PPV/PFO) and double emission layer with hole blocking layer(PFO/PFO : MEH-PPV/TPBI). The electrical and optical properties of prepared devices were compared. The prepared PLED showed yellow emission color with CIE color coordinates of x = 0.48, y = 0.48 at the applied voltage of 14V. The maximum luminance and current density were found to be about 3920 cd/$m^2$ and 130 mA/$cm^2$ at 14V, respectively for the PLED device with the structure of ITO/PEDOT : PSS/PFO/PFO : MEH-PPV/TPBI/LiF/Al.

  • PDF

할라이드 페로브스카이트 소재를 이용한 전자 소자에 관한 리뷰 (A Review of Electronic Devices Based on Halide Perovskite Materials)

  • 박형기;양정엽
    • 한국전기전자재료학회논문지
    • /
    • 제37권5호
    • /
    • pp.519-526
    • /
    • 2024
  • This review examines the use of halide perovskite materials in electronic devices, highlighting their exceptional optoelectronic properties and the challenges associated with them. Despite their potential for high-performance devices, practical applications are limited by sensitivity to environmental factors such as moisture and oxygen, etc. We discuss advances in enhancing stability and operational reliability, featuring innovative synthesis methods and device engineering strategies that help mitigate degradation. Furthermore, we explore the integration of perovskites in applications such as field-effect transistors and LEDs, emphasizing their transformative potential. This review also outlines future research directions, stressing the need for ongoing improvements in material stability and device integration to fully realize the commercial potential of perovskites.

Demonstration of Alternative Fabrication Techniques for Robust MEMS Device

  • Chang, Sung-Pil;Park, Je-Young;Cha, Doo-Yeol;Lee, Heung-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권4호
    • /
    • pp.184-188
    • /
    • 2006
  • This work describes efforts in the fabrication and testing of robust microelectromechanical systems (MEMS). Robustness is typically achieved by investigating non-silicon substrates and materials for MEMS fabrication. Some of the traditional MEMS fabrication techniques are applicable to robust MEMS, while other techniques are drawn from other technology areas, such as electronic packaging. The fabrication technologies appropriate for robust MEMS are illustrated through laminated polymer membrane based pressure sensor arrays. Each array uses a stainless steel substrate, a laminated polymer film as a suspended movable plate, and a fixed, surface micromachined back electrode of electroplated nickel. Over an applied pressure range from 0 to 34 kPa, the net capacitance change was approximately 0.14 pF. An important attribute of this design is that only the steel substrate and the pressure sensor inlet is exposed to the flow; i.e., the sensor is self-packaged.

광경화성 고분자를 이용한 단일 갭 반투과형 액정디스플레이 연구 (Study on single gap transflective liquid crystal display using the UV Curable Reactive Mesogen)

  • 허정화;김진호;진미형;임영진;이승희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.293-294
    • /
    • 2009
  • We proposed a novel single gap transflective liquid crystal display (LCD) using liquid crystal with negative dielectric anisotropy. We designed cell structure driven by fringe electric field in the transmissive (T) part and vertical electric field in the reflective (R) part. In the device, high surface pretilt angle of the LC in the R-part is achieved through polymerization of an UV curable reactive mesogen (RM) monomer at surfaces. By optimizing the parameters, a newly developed transflective display has characteristics such as single gap and single gamma curve.

  • PDF

$TiO_2$ 나노 입자의 중간 전극을 이용한 직렬 적층형 유기 태양 전지 (Solution-processed Polymer Tandem Cells Using Nano Crystalline $TiO_2$ Interlayer)

  • 정원석;주병권;고민재;박남규;김경곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.444-444
    • /
    • 2008
  • For the polymer tandem cell, simple and advantaged solution-based method to electron transport intermediate layer is presented which are composed $TiO_2$ nanoparticles. Device were based on a regioregular Poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl $C_{61}$ butyric acid methyl ester($PC_{60}BM$) blend as a donor and acceptor bulk-heterojunction. For the middle electrode interlayer, the $TiO_2$ nanoparticles were well dispersed in ethanol solution and formed thin layer on the P3HT:PCBM charge separation layer by spin coating. The layer serves as the electron transport layer and divides the polymer tandem solar cell. The open-circuit voltage (Voc) for the polymer tandem solar cells was closed to the sum of those of individual cells.

  • PDF

금속 애노드의 종류에 따른 Top Emission 특성 평가 (Characteristics of top emission PLED by metal anodes)

  • 이찬재;문대규;곽민기;김영훈;한정인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.968-971
    • /
    • 2002
  • Hole injection characteristics have been investigated with various metal anodes such as Ni, Pt, Cu, and AI for the top emission polymer light emitting diodes (PLEDs). Devices were composed of metal anode, Poly(3,4-ethylenedioxythiophene) doped with polystyrene sultponated acid (PEDT:PSS), poly [2-methoxy-5-(2-ethylhexyoxy)-1,4-phenylene-vinylene] (MEH-PPV) and Al cathode. The hole injection from ITO anode has been also investigated for the comparison. The I-V characteristics of the PLEDs with different metal anodes were measured. The work function of the anode is strongly related to the hole injection of the device. The current density of the device with Ni anode with higher work function was higher than that of the device with ITO or AI anode at the same operating voltage.

  • PDF

Switchable Holographic Polymer Dispersed Liquid Crystals for Full Color-Reflective Display

  • Cho, Young-Hee;Kim, Byung-Kyu;Kim, Jae-Chang
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제11C권3호
    • /
    • pp.91-95
    • /
    • 2001
  • Reflective holographic polymer dispersed liquid crystal(HPDLC) device has a multilayer structure consisting of alternate layers of polymer and liquid crystal droplets. Periodic modulation of a refractive index reflects light of a specific wavelength in accordance with Braggs law. Samples cured isotropically were illuminated with an Argon-ion lase at 514nm. We optimized the reflcetion efficiency of HPDLC as a function of monomer functionality, LC composition and irradiation intensity. The properties of the HPDLC films were observed by UV-visible spectroscopy. We found that the maximum reflection efficiency depends on the monomer functionality, LC composition, and laser intensity. We expect these films could be used in full-color reflective display by stacking them to obtain a mixture of colors.

  • PDF

Organic Thin Film Transistors with Gate Dielectrics of Plasma Polymerized Styrene and Vinyl Acetate Thin Films

  • Lim, Jae-Sung;Shin, Paik-Kyun;Lee, Boong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권2호
    • /
    • pp.95-98
    • /
    • 2015
  • Organic polymer dielectric thin films of styrene and vinyl acetate were prepared by the plasma polymerization deposition technique and applied for the fabrication of an organic thin film transistor device. The structural properties of the plasma polymerized thin films were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, and contact angle measurement. Investigation of the electrical properties of the plasma polymerized thin films was carried out by capacitance-voltage and current-voltage measurements. The organic thin film transistor device with gate dielectric of the plasma polymerized thin film revealed a low operation voltage of −10V and a low threshold voltage of −3V. It was confirmed that plasma polymerized thin films of styrene and vinyl acetate could be applied to functional organic thin film transistor devices as the gate dielectric.