Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.2.95

Organic Thin Film Transistors with Gate Dielectrics of Plasma Polymerized Styrene and Vinyl Acetate Thin Films  

Lim, Jae-Sung (HANA Micron Inc.)
Shin, Paik-Kyun (Department of Electrical Engineering, Inha University)
Lee, Boong-Joo (Department of Electronic Engineering, Namseoul University)
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.2, 2015 , pp. 95-98 More about this Journal
Abstract
Organic polymer dielectric thin films of styrene and vinyl acetate were prepared by the plasma polymerization deposition technique and applied for the fabrication of an organic thin film transistor device. The structural properties of the plasma polymerized thin films were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, atomic force microscopy, and contact angle measurement. Investigation of the electrical properties of the plasma polymerized thin films was carried out by capacitance-voltage and current-voltage measurements. The organic thin film transistor device with gate dielectric of the plasma polymerized thin film revealed a low operation voltage of −10V and a low threshold voltage of −3V. It was confirmed that plasma polymerized thin films of styrene and vinyl acetate could be applied to functional organic thin film transistor devices as the gate dielectric.
Keywords
Plasma polymerization; Organic thin film transistor; Gate dielectric; Plasma polymerized styrene (ppS); Plasma polymerized vinyl acetate (ppVA);
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Klauk, Organic Electronics, Materials, Manufacturing and Applications (Wiley-VCH Weinheim, 2006) Chapter 6.
2 H. K. Yasuda, Plasma Polymerization (Academic press, New York, 1985) Chapter 4.
3 J. S. Lim and P. K. Shin, Appl. Surf. Sci., 253, 3828 (2007).   DOI   ScienceOn
4 S. P. Russell and D. H. Weinkauf, Polymer, 42, 2827 (2001).   DOI   ScienceOn
5 F. M. Fowkes, Treatise on Adhesion and Adhesives, edited by R. L. Patrick Marcel Dekker (New York, 1967) p. 352.
6 H. L. Luo, J. Sheng, and Y. Z. Wan, Appl. Surf. Sci., 253, 5203 (2007).   DOI   ScienceOn
7 D. Merche, C. Poleunis, P. Bertrand, M. Sferrazza, and F. Reniers, IEEE Trans. Plasma Sci., 37, 951 (2009).   DOI   ScienceOn
8 M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schutz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature, 431, 963 (2004).   DOI   ScienceOn
9 H. Klauk, M. Halik, F. Eder, G. Schmid, C. Dehm, D. Rohde, R. Brederlow, S. Briole, S. Maisch, F. Effenberger, and U. Zschieschang, Electron Devices Meeting (IEDM) Tech. Dig., 369 (2004).
10 C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, Science, 283, 822 (1999).   DOI   ScienceOn
11 N. Arora, MOSFET Models for VLSI Circuit Simulation Theory and Practice (Springer, New York, 1993) Chapter 4.
12 S. Y. Yang, K. Shin, and C. E. Park, Adv. Funct. Mater., 15, 1806 (2005).   DOI   ScienceOn
13 S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, Appl. Phys. Lett., 88, 162109 (2006).   DOI   ScienceOn
14 J. S. Lim, P. K. Shin, B. J. Lee, and S. Lee, Org. Electron., 11, 951 (2010).   DOI   ScienceOn
15 N. Arora, MOSFET Models for VLSI Circuit Simulation Theory and Practice (Springer, New York, 1993) Chapter 7.
16 Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, and K. Cho, Appl. Phys. Lett., 87, 152105 (2005).   DOI   ScienceOn