• Title/Summary/Keyword: Polymer Development

Search Result 1,398, Processing Time 0.025 seconds

Strength Properties of Ultrarapid-Hardening polymer-Modified Concrete with Fiber (섬유 혼입 초속경 폴리머 시멘트 콘크리트의 강도 특성)

  • Joo, Myung-Ki;Noh, Byung-Chul;Kim, Young-Sang;Choi, Kyu-Hyung;Choi, Yong-Son
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.749-752
    • /
    • 2008
  • The effects of fiber content on strength properties of ultrarapid-hardening polymer-modified concretes with fiber. As a result, the compressive and flexural strengths of ultrarapid-hardening polymer-modified concretes with fiber increase with increasing of fiber content. In particular, the ultrarapid-hardening polymer-modified concretes with a polymer-cement ratio of 20% and a fiber content of 0.08% provide approximately two times higher flexural strength than unmodified concretes. Such high strength development is attributed to the high tensile strength of polymer and fiber and the improved bond between cement hydrates and aggregates because of the addition of polymer and fiber.

  • PDF

Development and Characterization of Asymmetric Swelling-Induced Wrinkles on Natural Rubber Surface

  • Lee, Gi-Bbeum;Sathi, Shibulal Gopi;Kim, Min Jung;Park, Changsin;Huh, Yang Il;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • Characteristics of the swelling-induced wrinkles on the surfaces of natural rubber (NR) film were investigated. The wrinkle structure was generated by swelling of NR film pre-stretched and firmly bonded onto an aluminum substrate in hexane. A novel experimental method was adopted to replicate the swelling-induced wrinkles on the NR film using an epoxy-hardener system. To get insight into the wrinkle parameters; the wrinkle length (L), wrinkle distance (D), wrinkle height (H) and the angle between two consecutive wrinkles (${\theta}$), the cross-sections of the replicas obtained from saturated swollen NR film were examined using an optical microscopy (OM). From the OM images, the wrinkling parameters were measured as a function of the thickness of NR film from 0.42 to 1.76 mm. Also, it was evaluated that the effects of swelling time on the wrinkling parameters. The length (L), distance (D) and height (H) of wrinkles increased as the thickness of the NR film and the swelling time increased. However, the angle between the wrinkles (${\theta}$) showed a sharp decrease up to a swelling time of 200 minutes and slightly decreased afterwards.

Development of Polymer Coating Method for Stable Stent Coating Using Chemical Bond Between Metal Surface and Polymer (안정된 스텐트 코팅막을 형성하기 위해 금속표면과 고분자 사이의 화학적 결합을 이용한 고분자 코팅법 개발)

  • Nam, Dae-Sik;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • To produce stable polymer coating layer using the interaction between metal stent and polymer layer, Ahx-HSAB was synthesized by coupling 6-aminoheanoic acid (Ahx) with N-Hydroxy succinimidyl 4-azidobenzonate (HSAB) containing photo reactive group. Then, Ahx-HSAB was applied to self·assembled monolayer (SAM) on $TiO_2$-coated surface, since one end of Ahx-HSAB was carboxyl acid which was known to be able to interact with $TiO_2$ surface. That SAM layer was incubated in 1% polycaprolacton (PCL) solution and photoreacted by ultraviolet light (254 nm) to produce the chemical bond between SAM and polymer layer, followed by PCL polymer coating ({\sim}5\;{\mu}m$) by the method of spray coating. The surface change was investigated by measuring of contact angle of the surface. The contact angle values of stainless steel (SS) surface, $TiO_2$-coated surface, SAM layer by Ahx-HSAB, photoreacted surface with PCL and PCL layer by spray coating were 70.48${\pm}$1.89, 38.57${\pm}$3.31, 60.14${\pm}$2.21, 54.91${\pm}$2.70 and 56.47${\pm}$2.12, respectively. The stability of polymer layers was tested by incubation of PCL-coated plates in 0.1M PBS buffer (pH 7.4, 0.05%, Tween 80) with vigorous shaking (200 rpm). While the poiymer layer prepared by these processes showed the intact surface morphology over 3 days, the polymer layers prepared by spray coating of PCL onto SS plate (control 1) and $TiO_2$-coated SS plate (control 2) were Peeled off in 3 days. Thus, the polymer coating method using SAM and photoreaction seems to be a effective method to obtain the stable polymer layer onto SS surface.

Physical Properties and Durability of Polymer Modified Mortar Using Styrene and Butyl Acrylate Latexes (St/BA 폴리머 시멘트 모르타르의 물리적 특성 및 내구성)

  • Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.342-346
    • /
    • 2009
  • The effects of the monomer ratios on the typical properties of polymer modified mortars that contain styrene and butyl acrylate latexes was investigated. Basic data was also obtained that is necessary for the development of appropriate latexes for cement modifiers. Polymer modified mortars that contain styrene and butyl acrylate latexes polymerized with various monomer ratios were prepared for different polymer-cement ratios. They were then tested to obtain the particle size of the polymer latexes, air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the polymer modified mortars that have styrene and butyl acrylate latexes (with the mix proportions of synthesis having monomer ratios of between 40:60 to 60:40 for the appropriate mix proportions) could be recommended for practical applications. The basic properties of the polymer modified mortars were more affected by the polymer-cement ratio than by the monomer ratio, and were improved over unmodified mortar.

Development of Naturally Degradable "Rice Polymer" For Organic Weed Management of Red Pepper and Rice

  • Kang, C.K.;Nam, H.S.;Lee, Y.K.;Lee, S.B.;Lee, B.M.;Oh, Y.J.;Jee, H.J.;Hong, M.K.;Jung, K.W.;Lee, Y.J.;Choi, Y.H.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.119-122
    • /
    • 2011
  • Among the developed bio-degradable polymer films as compared with transparent film(White), black polymer film was significantly more effective for controlling weeds in red pepper. Also, we found that white and black polymer mulching had 81.8% and 97.9% of managing weed controlling effects in rice, respectively. Compared to non-mulched rice paddy with water supply, the non-mulched rice paddy without any water supply has stopped its growth at 41 days after transplanting, while polymer-mulched rice paddy without water supply had about 60% of normally growing rice plants. This shows the polymer treatment has a remarkable effect on water and power saving, solution of herbicidal resistance, avoidance of herbicidal influence to eco-system etc. When the naturally decomposing polymer was used, a temperature was elevated as high as $4.7^{\circ}C$ on maximum and $2.6^{\circ}C$ on average. Also the naturally decomposing polymer accelerated rooting by 7 days and lowered a stress level from transplanting. The weed control effect mulched by polymer was remarkable as 98.7%. The polymer now, after 294 days treated on the rice paddy, has been completely decomposed.

Errects of the Length of Carbon Fiber on the Wear Properties of Carbon/Carbon Composites (탄소/탄소 복합재료의 마모특성에 대한 탄소섬유 길이의 영향)

  • Ha, Hun-Seung;Kim, Dong-Kyu;Park, In-Seo;Im, Yeon-Su;Yun, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.292-299
    • /
    • 1993
  • In this paper the effects of the length of carbon fiber on the wear properties of carboni carbon composites were investigated. Carbon/carbon composites were fabricated by the liquid impregnation method using the resol-type phenolic resin as a matrix precursor and PAN-based, non-surface treated carbon fiber as a reinforcement. The measured values of the friction coefficient of carbon/carbon composites against AlSl 304 stainless steel ranged from 0.2 to 0.3 under the operating condition used in this study. The effect of the length of carbon fiber on the friction coefficient of carbon/carbon composites were not found. But, it was realized that the wear rate of carbon/carbon composites tends to increase, as the length of carbon fiber increases.

  • PDF

Nano-Kenaf Cellulose Effects on Improved Mechanical Properties of Polypropylene Composite (나노 케냐프 셀룰로오스가 폴리프로필렌 복합소재의 물성 증가에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Bumm, Sughun;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.613-617
    • /
    • 2013
  • The effects of nano size kenaf cellulose fiber on mechanical property of polypropylene (PP) composite were investigated. The addition of nano-kenaf in place of natural kenaf showed higher tensile strength, flexural strength, impact strength, and heat deflection temperature compared to the natural kenaf filled PP composite, while it shows lower melt flow index, elongation%, and flexural modulus. These seemed to be due to the increased surface area of nano-kenaf fiber contacting PP matrix and reduced impurities such as volatile extractives on the fiber surface.

Effect of Transesterification on the Characteristics of PET/PEN Blend Flexible Substrate (상호에스테르 교환반응이 폴리(에틸렌 테레프탈레이트)/폴리(에틸렌 나프탈레이트) 블렌드 유연기관 특성에 미치는 영향)

  • Kim, Jae-Hyun;Kim, Whan-Ki;Yum, Ju-Sun;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.249-253
    • /
    • 2011
  • The effect of morphological development in PET/PEN blending on the physical properties of PET/PEN blend film as a flexible substrate was investigated. The two phase morphology was obtained in PET/PEN blends and it caused the improvement of dimensional stability of PET/PEN blend as a flexible substrate. The two phase morphology and crystallinity of PET/PEN blends could be controlled by the transesterification between PET and PEN during the film processing and this macroscopic structural development affected the dimensional stability of PET/PEN blend films. Better dimensional stability was obtained with increasing crystallinity and decreasing the level of transesterification.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

A Study of Fashion Design Applying a 3D Print Polymer-Fabric Structure (3DP 폴리머-패브릭(3D Print Polymer-Fabric Structure)을 적용한 패션디자인 연구)

  • Soyung Im;Jaehoon Chun
    • Fashion & Textile Research Journal
    • /
    • v.25 no.2
    • /
    • pp.139-152
    • /
    • 2023
  • Despite efforts to apply 3D print (3DP) technology in the field of fashion and endless discussions about the possibility of future development, in reality, it is difficult to utilize 3DP technology in fashion for reasons related to material, technology, and cost constraints. The purpose of this study was to supplement the limitations of 3DP technology in order to promote its utilization in fashion and simultaneously find a solution to achieve aesthetic satisfaction in the design method. Specifically, through the development of fashion products with a 3DP polymer-fabric structure to which the parametric design methodology has been applied, this study explored the possibility of practical application and proposes a new 3DP fashion design method. The 3DP polymer-fabric developed as a result of the research was stably adhered to the fabric. Additionally, the study confirmed the possibility of making 3DP clothes that are amenable to the wearer's activities, as it was verified that cutting and sewing tailored to the human body's curvature and structure can be performed. The design process using the 3DP polymer-fabric presented in this study is meaningful in that it suggests a solution to complement the limitations of modern technology in connection with designers' creativity. Moreover, the design process presented in this study is expected to contribute to the commercialization and generalization of 3DP by providing practical help to allow fashion experts to utilize 3DP technology.